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ABSTRACT. We develop the theoretical foundations of a network distance that has recently been
applied to various subfields of topological data analysis, namely persistent homology and hierarchical
clustering. While this network distance has previously appeared in the context of finite networks,
we extend the setting to that of compact networks. The main challenge in this new setting is the
lack of an easy notion of sampling from compact networks; we solve this problem in the process of
obtaining our results. The generality of our setting means that we automatically establish results for
exotic objects such as directed metric spaces and Finsler manifolds. We identify readily computable
network invariants and establish their quantitative stability under this network distance. We also
discuss the computational complexity involved in precisely computing this distance, and develop
easily-computable lower bounds by using the identified invariants. By constructing a wide range of
explicit examples, we show that these lower bounds are effective in distinguishing between networks.
Finally, we provide a simple algorithm that computes a lower bound on the distance between two
networks in polynomial time and illustrate our metric and invariant constructions on a database of
random networks and a database of simulated hippocampal networks.
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1. INTRODUCTION

Networks which show the relationships within and between complex systems are key tools in
a variety of current research areas. In the domain of bioinformatics, networks have been used to
represent molecular activity [83], metabolic pathways [77], functional relations between enzyme
clusters [69] and genetic regulation [85, 64]. Networks have been used as a natural tool for
representing brain anatomy and function [90, 91, 92, 80, 73]. Network-based methods have also
appeared in data mining [98], where the goal is to extract patterns or substructures that appear
with higher frequency than in a randomized network [21, 46, 102]. Other examples of networks
include social networks [54, 27], information networks such as the World Wide Web [31, 68, 51],
and technological networks such as the electric power grid [100, 56]. For a more comprehensive
list of the literature on complex networks, consult [66].

A recent development in network analysis is the application of methods from topological data
analysis, e.g. persistent homology, to network data. Although this connection is being developed
rapidly [86, 87, 75, 76, 38, 37, 25, 59, 17], there is much that remains to be explored. It is important
to point out that some authors have treated networks as metric spaces [55, 49] or symmetric objects
such as weighted graphs [13, 38, 76], both of which are well-understood mathematical objects. In
contrast, the authors of [17, 16] treated a network as a generalization of a metric space, i.e. a finite
set X equipped with an arbitrary function ωX : X �X Ñ R, and provided a formal treatment of
persistent homology in this general setting. A key theoretical contribution of [17] was a set of proofs
showing stability of persistent homology methods applied to networks, which is a necessary step in
making such methods amenable to data analysis. The essential ingredient in the discussion regarding
stability was a definition of a network distance dN , which in turn had appeared in earlier applications
of topological data analysis methods (namely hierarchical clustering) to networks [12, 11], and
more recently in [88] and [19] (in proving stability for an alternative persistent homology method
for network data).

From a theoretical perspective, there still exists a gap in our understanding of this network
distance dN , which is structurally based on the Gromov-Hausdorff distance [41, 42] between metric
spaces. Beyond its origins in metric geometry [7], the Gromov-Hausdorff distance between metric
spaces has found applications in the context of shape and data analysis [62, 60, 61, 10, 15]. Thus
one expects that an appropriate modification of the Gromov-Hausdorff distance would be a valuable
tool in network analysis. The literature on dN listed above suggests that this is indeed the case.
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However, while dN has found successful theoretical applications, there are important foundational
questions about dN that need to be answered, such as the following:

Question 1. What is the “continuous limit” of a finite (discrete) network, and how does one extend
dN to this setting?

In this paper we provide an answer to the question above. We view a network as a first countable
topological space X equipped with a continuous weight function ωX : X �X Ñ R. This definition
immediately subsumes both metric spaces and the finite networks (understood to have the discrete
topology) described earlier. We state most of our results for compact networks, which are networks
satisfying the additional constraint that the underlying space is compact.

Our rationale for using the term network to refer to the object described above arises from the
finite case: a n-point network, for n P N, is simply an n� n matrix of real numbers, which can be
viewed as the adjacency matrix of a directed, weighted graph with self-loops. Directed, weighted
graphs are of central interest in the graph theory literature, and our treatment of dN should be
viewed as a non-combinatorial approach towards producing a similarity measure on such objects.

Proceeding further with the connection to graph theory, we consider the connection between
the standard notion of graph isomorphism, which we call strong isomorphism, and the notion of
being at dN -distance zero. Interestingly enough, for two networks pX,ωXq and pY, ωY q, strong
isomorphism implies dN pX, Y q � 0, but the reverse implication is not necessarily true. This leads
to the following question:

Question 2. What is the “correct” notion of network isomorphism, in relation to dN?

A final question of practical importance is the following:

Question 3. How does one approximate dN , given that the Gromov-Hausdorff distance is known
[61] to be an NP-hard computation?

1.1. Contributions and organization of the paper. We begin in §2 with our model for networks:
finite, compact, and general. We do not impose any condition on the edge weights involved, apart
from requiring that they be real numbers. In particular, we do not assume symmetry or the triangle
inequality. In this section, we introduce the notion of weak isomorphism as an answer to Question
(2) posed above. We also provide a simple interpretation of weak isomorphism in the setting of
finite networks, and an explanation for why this simple interpretation is highly non-trivial in the
compact case.

In §2 we also define the network distance dN , as well as a modified distance that we denote bypdN . We develop intuition for dN through numerous computations of dN for small networks. The
details of these computations suggest that computing dN is, in general, a difficult problem. This
leads to the discussion of network invariants in 4, which are demonstrated to provide lower bounds
on the dN -distance between two networks and thus constitute one part of our answer to Question
(3). We complete our answer to this question in §5, where we show that in general, dN is NP-hard
to compute, and so a better approach is to use the lower bounds as proxies for computing the actual
network distance. Moreover, we provide algorithmic details about the computation of one of our
strongest lower bounds and exemplify its use for classifying networks in a database.

In §3, we turn our attention to Question (1). We present compact networks as the continuous
analogues of finite networks, obtained in the limit from a process of taking finer and finer samples
of finite networks. We then give a precise characterization of weak isomorphism in the setting of
compact networks.
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After answering some of the foundational questions about dN that we have raised above, we
devote §6 to demonstrating some surprising connections between our notion of dN and the notion of
cut distance that is available in the graph theory literature [57]. Roughly speaking, the cut distance
is an `1 notion, whereas dN is an `8 notion. We show that under the appropriate interpretation in
the realm of compact metric spaces, these distances are equivalent.

We conclude in §7 with a discussion of the paper. Proofs not contained in the main text are
relegated to §A.

To aid researchers who may be interested in using our methods, we have released a Matlab
software package called PersNet to accompany this paper. This package may be downloaded
from https://github.com/fmemoli/PersNet.

1.2. Related literature. Finding a suitable metric for network similarity is a central aim in network
analysis. Classical approaches in this direction involve the edit distance and the maximum/minimum
common sub/supergraph problem [14, 47, 39, 40]. Similarity measures on graphs with the same
nodes have been studied in [53], and within the framework of shuffled graph classification in
[96, 97]. Metrics generated by random walks and graph kernels are discussed in [52, 89, 95]. More
recent approaches using graph edit distance are discussed in [36, 9, 30, 103, 58]. Spectral methods
for graph matching are described in [45, 44]. A method using probability densities to approximate
networks embedded in hyperbolic space is described in [1]. The cut metric has been used to study
convergent sequences and limits of graphs by Lovász, Borgs, Chayes and collaborators [57, 4],
with extensions developed by Diaconis and Janson [24]. In particular, the cut metric bears the
most similarity to the network distance that we propose, although these notions of distance have
independent roots in the mathematical literature. The main object of interest in the cut metric
literature is a graphon, which is the limiting object of a convergent sequence of graphs. Graphons
are useful in applications because they form a family of very general random graph models—see
[29] for an application to hierarchical clustering.

Whereas the networks we consider are very general, many of the papers mentioned above make
one or more of the simplifying assumptions that the networks involved have the same number of
nodes, are undirected, or are unweighted. For example, in the case of undirected networks, a popular
approach is to obtain eigenvectors and eigenvalues of the graph Laplacian via the spectral theorem
[20]. However, because the spectral theorem does not apply for non-symmetric matrices, studying
eigenvalues or eigenvectors may not be the best approach for directed networks. For applications,
assuming that a network is undirected or unweighted results in a loss of structure when the original
data set contains asymmetric relations that may be interpreted as directed edge weights. This is
often the case when studying biological networks [26, 101, 79].

1.3. Notation and basic terminology. We will denote the cardinality of any set S by cardpSq. For
any set S we denote by F pSq the collection of all finite subsets of S. For a topological space X , we
write CpXq to denote the closed subsets of X . A recurring notion is that of the Hausdorff distance
between two subsets of a metric space. For a given metric space pZ, dZq, the Hausdorff distance
between two nonempty subsets A,B � Z is given by:

dZHpA,Bq � max

"
sup
aPA

inf
bPB

dZpa, bq, sup
bPB

inf
aPA

dZpa, bq

*
.

In particular, we have dZHpA,Bq � 0 if and only if A � B [7, Proposition 7.3.3]. We will denote the
non-negative reals by R�. The all-ones matrix of size n� n will be denoted 1n�n. Given a function
f : X Ñ Y between two sets X and Y , the image of f will be denoted impfq or fpXq. We use

https://github.com/fmemoli/PersNet
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square brackets to denote preimages, e.g. if B � Y , then f�1rBs denotes the preimage of B under
f . Given a topological space X and a subset A � X , we will write A to denote the closure of A.
The nonempty elements of the power set of a set S will be denoted PpSq.

We recall some basic definitions. Let X be a topological space. Then x P X is a limit point of a
sequence pxnqnPN P XN if each open set containing x also contains all but finitely many terms of
pxnqnPN. The sequence is then said to converge to x. A point x P X is a limit point of a set A � X
if every open set containing x contains a point of A distinct from x.

2. NETWORKS, ISOMORPHISM, AND NETWORK DISTANCES

For real-world applications, the object of interest is often the collection of all finite networks,
which we denote by FN . Formally, one writes:

FN :� tpX,ωXq : X a finite set, ωX : X �X Ñ R any mapu .

However, in order to build a satisfactory theoretical foundation, one also needs to develop a
formalism for infinite networks. Thus we proceed with the following definition.

Definition 1 (Networks). Let X be a first countable topological space, and let ωX be a continuous
function from X �X (endowed with the product topology) to R. By a network, we will mean a
pair pX,ωXq. We will denote the collection of all networks by N .

Notice in particular that N includes metric spaces (they are first countable, and the distance func-
tion is continuous) as well as spaces that are quasi-metric or directed (no symmetry), pseudometric
(no nondegeneracy), semimetric (no triangle inequality), or all of the above. Recall that a space is
first countable if each point in the space has a countable local basis (see [93, p. 7] for more details).
First countability is a technical condition guaranteeing that when the underlying topological space
of a network is compact, it is also sequentially compact.

Given a network pX,ωXq, we will refer to the points of X as nodes and ωX as the weight function
of X . Pairs of nodes will be referred to as edges. Given a nonempty subset A � X , we will refer
to pA, ωX |A�Aq as the sub-network of X induced by A. For notational convenience, we will often
write X P N to mean pX,ωXq P N .

Recall that any finite set X can be equipped with the discrete topology, and any map ωX :
X �X Ñ R is continuous with respect to the discrete topology. Thus the elements of FN trivially
fit into the framework of N . Throughout the paper, we will always understand finite networks to be
equipped with the discrete topology.

While we are interested in FN for practical applications, a key ingredient of our theoretical
framework is the collection of compact networks. We define these to be the networks pX,ωXq
satisfying the additional constraint that X is compact. The collection of compact networks is
denoted CN . Specifically, we write:

CN :� tpX,ωXq : X compact, first countable topological space, ωX : X �X Ñ R continuousu .

Compact networks are of special practical interest because they can be finitely approximated, in a
manner that we will make precise in §3.1. Real world networks that are amenable to computational
tasks are necessarily finite, so whenever possible, we will state our results for compact networks.
Occasionally we will provide examples of noncompact networks to illustrate interesting theoretical
points.

A natural question in understanding the structure of N would be: which elements of N are
equivalent? A suitable answer to this question requires us to develop notions of isomorphism that
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FIGURE 1. Networks over one and two nodes with their weight functions.

show various degrees of restrictiveness. These notions of isomorphism form a recurrent theme
throughout this paper.

We first develop the notion of strong isomorphism of networks. The definition follows below.

Definition 2 (Weight preserving maps). Let pX,ωXq, pY, ωY q P N . A map ϕ : X Ñ Y is weight
preserving if:

ωXpx, x
1q � ωY pϕpxq, ϕpx

1qq for all x, x1 P X.

Definition 3 (Strong isomorphism). Let pX,ωXq, pY, ωY q P N . To say pX,ωXq and pY, ωY q are
strongly isomorphic means that there exists a weight preserving bijection ϕ : X Ñ Y . We will
denote a strong isomorphism between networks by X �s Y . Note that this notion is exactly the
usual notion of isomorphism between weighted graphs.

Strongly isomorphic networks formalize the idea that the information contained in a network
should be preserved when we relabel the nodes in a compatible way.

Example 1. Networks with one or two nodes will be very instructive in providing examples and
counterexamples, so we introduce them now with some special terminology.


 A network with one node p can be specified by α P R, and we denote this by N1pαq. We
have N1pαq �

s N1pα
1q if and only if α � α1.


 A network with two nodes will be denoted by N2pΩq, where Ω �
�
α δ
γ β

�
P R2�2. Given

Ω,Ω1 P R2�2, N2pΩq �
s N2pΩ

1q if and only if there exists a permutation matrix P of size
2� 2 such that Ω1 � P ΩP T .


 Any k-by-k matrix Σ P Rk�k induces a network on k nodes, which we refer to as NkpΣq.
Notice that NkpΣq �

s N`pΣ
1q if and only if k � ` and there exists a permutation matrix P

of size k such that Σ1 � P ΣP T .

Having defined a notion of isomorphism between networks, the next goal is to present the
network distance dN that is the central focus of this paper, and verify that dN is compatible with
strong isomorphism. We remind the reader that restricted formulations of this network distance
have appeared in earlier applications of hierarchical clustering [12, 11] and persistent homology
[16, 17, 19] methods to network data, and our overarching goal in this paper is to provide a
theoretical foundation for this useful notion of network distance. In our presentation, we use a
formulation of dN that is more general than any other version available in the existing literature. As
such, we proceed pedagogically and motivate the definition of dN by tracing its roots in the metric
space literature.

One strategy for defining a notion of distance between networks would be to take a well-
understood notion of distance between metric spaces and extend it to all networks. The network
distance dN arises by following this strategy and extending the well-known Gromov-Hausdorff
distance dGH between compact metric spaces [41, 7, 74]. The definition of dGH is rooted in the
Hausdorff distance d
H between closed subsets of a metric space.
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Definition 4. Given metric spaces pX, dXq and pY, dY q, the Gromov-Hausdorff distance between
them is defined as:

dGHppX, dXq, pY, dY qq :� inf
 
dZHpϕpXq, ψpY qq : Z a metric space,

ϕ : X Ñ Z, ψ : Y Ñ Z isometric embeddings
(
.

The Gromov-Hausdorff distance dates back to at least the early 1980s [41], and it satisfies
numerous desirable properties. It is a valid metric on the collection of isometry classes of compact
metric spaces, is complete, admits many precompact families, and has well-understood notions of
convergence [7, Chapter 7]. Moreover, it has found real-world applications in the shape matching
[62, 63] and persistent homology literature [15], and its computational aspects have been studied as
well [61]. As such, it is a strong candidate for use in defining a network distance.

Unfortunately, the formulation of dGH above is heavily dependent on a metric space structure,
and the notion of Hausdorff distance may not make sense in the setting of networks. So dGH

as defined above cannot be directly extended to a network distance. However, it turns out that
there is a reformulation of dGH that utilizes the language of correspondences [48, 7]. We present
this construction next, and note that the resulting network distance dN will agree with dGH when
restricted to metric spaces.

Definition 5 (Correspondence). Let pX,ωXq, pY, ωY q P N . A correspondence between X and Y is
a relation R � X � Y such that πXpRq � X and πY pRq � Y , where πX and πY are the canonical
projections of X � Y onto X and Y , respectively. The collection of all correspondences between
X and Y will be denoted RpX, Y q, abbreviated to R when the context is clear.

Example 2 (1-point correspondence). Let X be a set, and let tpu be the set with one point. Then
there is a unique correspondence R � tpx, pq : x P Xu between X and tpu.

Example 3 (Diagonal correspondence). Let X � tx1, . . . , xnu and Y � ty1, . . . , ynu be two
enumerated sets with the same cardinality. A useful correspondence is the diagonal correspondence,
defined as ∆ :� tpxi, yiq : 1 ¤ i ¤ nu . When X and Y are infinite sets with the same cardinality,
and ϕ : X Ñ Y is a given bijection, then we write the diagonal correspondence as ∆ :�
tpx, ϕpxqq : x P Xu .

Definition 6 (Distortion of a correspondence). Let pX,ωXq, pY, ωY q P N and let R P RpX, Y q.
The distortion of R is given by:

dispRq :� sup
px,yq,px1,y1qPR

|ωXpx, x
1q � ωY py, y

1q|.

Remark 4 (Composition of correspondences). Let pX,ωXq, pY, ωY q, pZ, ωZq P N , and let R P
RpX, Y q, S P RpY, Zq. Then we define:

R � S :� tpx, zq P X � Z | Dy, px, yq P R, py, zq P Su.

In the proof of Theorem 12, we verify that R�S P RpX,Zq, and that dispR�Sq ¤ dispRq�dispSq.

Definition 7 (The first network distance). Let pX,ωXq, pY, ωY q P N . We define the network
distance between X and Y as follows:

dN ppX,ωXq, pY, ωY qq :� 1
2

inf
RPR

dispRq.

When the context is clear, we will often write dN pX, Y q to denote dN ppX,ωXq, pY, ωY qq. We
define the collection of optimal correspondences Ropt between X and Y to be the collection
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tR P RpX, Y q : dispRq � 2dN pX, Y qu . This set is always nonempty when X, Y P FN , but may
be empty in general (see Example 9).

Remark 5. The intuition behind the preceding definition of network distance may be better un-
derstood by examining the case of a finite network. Given a finite set X and two edge weight
functions ωX , ω1X defined on it, we can use the `8 distance as a measure of network similarity
between pX,ωXq and pX,ω1Xq:

}ωX � ω1X}`8pX�Xq :� max
x,x1PX

|ωXpx, x
1q � ω1Xpx, x

1q|.

A generalization of the `8 distance is required when dealing with networks having different
sizes: Given two sets X and Y , we need to decide how to match up points of X with points of
Y . Any such matching will yield a subset R � X � Y such that πXpRq � X and πY pRq � Y ,
where πX and πY are the projection maps from X � Y to X and Y , respectively. This is precisely a
correspondence, as defined above. A valid notion of network similarity may then be obtained as the
distortion incurred by choosing an optimal correspondence—this is precisely the idea behind the
definition of the network distance above.

Remark 6. Some simple but important remarks are the following:
(1) When restricted to metric spaces, dN agrees with dGH. This can be seen from the reformula-

tion of dGH in terms of correspondences [7, Theorem 7.3.25], [48]. Whereas dGH vanishes
only on pairs of isometric compact metric spaces (which are Type I weakly isomorphic as
networks), dN vanishes on pairs of Type II weakly isomorphic networks. This comment
will be elucidated in the proof of Theorem 12.

(2) Given X, Y P FN , the network distance reduces to the following:

dN pX, Y q �
1

2
min
RPR

max
px,yq,px1,y1qPR

|ωXpx, x
1q � ωY py, y

1q|.

Moreover, there is always at least one optimal correspondence Ropt for which dN pX, Y q is
achieved; this is a consequence of considering finite networks.

(3) For any X, Y P CN , we have RpX, Y q � ∅, and dN pX, Y q is always bounded. Indeed,
X � Y is always a valid correspondence between X and Y . So we have:

dN pX, Y q ¤
1

2
dispX � Y q ¤

1

2

�
sup
x,x1

��ωXpx, x1q��� sup
y,y1PY

��ωY py, y1q��
   8.

Example 7. Now we give some examples to illustrate the preceding definitions.

 For α, α1 P R consider two networks with one node each: N1pαq � ptpu, αq and N1pα

1q �
ptp1u, α1q. By Example 2 there is a unique correspondence R � tpp, p1qu between these two
networks, so that dispRq � |α � α1| and as a result dN pN1pαq, N1pα

1qq � 1
2
|α � α1|.


 Let pX,ωXq P FN be any network and for α P R let N1pαq � ptpu, αq. Then R �
tpx, pq, x P Xu is the unique correspondence between X and tpu, so that

dN pX,N1pαqq �
1

2
max
x,x1PX

��ωXpx, x1q � α
��.

We are now ready to make our first attempt at answering Question (2): we test whether dN
is compatible with strong isomorphism. Given two strongly isomorphic networks, i.e. networks
pX,ωXq, pY, ωY q and a weight preserving bijection ϕ : X Ñ Y , it is easy to use the diagonal
correspondence (Example 3) to verify that dN pX, Y q � 0. However, it is easy to see that the reverse
implication is not true in general. Using the one-point correspondence (Example 2), one can see
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X

Z

Y�s

Strong isomorphism:
φX , φY injective and
surjective

φX φY

X

Z

Y�w
I

Type I weak isomor-
phism: φX , φY only
surjective

φX φY

FIGURE 2. Relaxing the requirements on the maps of this “tripod structure” is a
natural way to weaken the notion of strong isomorphism.

that dN pN1p1q, N2p12�2qq � 0. Here 1n�n denotes the all-ones matrix of size n� n for any n P N.
However, these two networks are not strongly isomorphic, because they do not even have the same
cardinality. Thus to answer Question (2), we need to search for a different, perhaps weaker notion
of isomorphism.

To proceed in this direction, first notice that a strong isomorphism between two networks pX,ωXq
and pY, ωY q, given by a bijection f : X Ñ Y , is equivalent to the following condition: there
exists a set Z and bijective maps ϕX : Z Ñ X,ϕY : Z Ñ Y such that ωXpϕXpzq, ϕXpz1qq �
ωY pϕY pzq, ϕY pz

1qq for each z, z1 P Z. To see this, simply let Z � tpx, fpxqq : x P Xu and let
ϕX , ϕY be the projection maps on the first and second coordinates, respectively. Based on this
observation, we make the next definition.

Definition 8. Let pX,ωXq and pY, ωY q P N . We define X and Y to be Type I weakly isomorphic,
denoted X �w

I Y , if there exists a set Z and surjective maps ϕX : Z Ñ X and ϕY : Z Ñ Y such
that ωXpϕXpzq, ϕXpz1qq � ωY pϕY pzq, ϕY pz

1qq for each z, z1 P Z.

Notice that Type I weak isomorphism is in fact a relaxation of the notion of strong isomorphism.
Indeed, if in addition to being surjective, we require the maps φX and φY to be injective, then the
strong notion of isomorphism is recovered. In this case, the map φY � φ�1

X : X Ñ Y would be a
weight preserving bijection between the networks X and Y . The relaxation of strong isomorphism
to a Type I weak isomorphism is illustrated in Figure 2. Also observe that the relaxation is strict.
For example, the networks X � N1p1q and Y � N2p12�2q, are weakly but not strongly isomorphic
via the map that sends both nodes of Y to the single node of X .

We remark that when dealing with infinite networks, it will turn out that an even weaker notion
of isomorphism is required. We define this weakening next.

Definition 9. Let pX,ωXq and pY, ωY q P N . We define X and Y to be Type II weakly isomorphic,
denoted X �w

II Y , if for each ε ¡ 0, there exists a set Zε and surjective maps φεX : Zε Ñ X and
φεY : Zε Ñ Y such that

|ωXpφ
ε
Xpzq, φ

ε
Xpz

1qq � ωY pφ
ε
Y pzq, φ

ε
Y pz

1qq|   ε for all z, z1 P Zε. (1)

Remark 8 (Type I isomorphism is stronger than Type II). Let pX,ωXq, pY, ωY q P CN and suppose
ϕ : X Ñ Y is a surjective map such that ωXpx, x1q � ωY pϕpx

1q, ϕpx1qq for all x, x1 P X . Then X
and Y are Type I weakly isomorphic and hence Type II weakly isomorphic, i.e. X �w

II Y . This
result follows from Definition 8 by: (1) choosing Z � X , and (2) letting φX be the identity map,
and (3) letting φY � ϕ. The converse implication, i.e. that Type I weak isomorphism implies the
existence of a surjective map as above, is not true: an example is shown in Figure 3.

Example 9 (Infinite networks without optimal correspondences). The following example illustrates
the reason we had to develop multiple notions of weak isomorphism. The key idea is that the
infimum in Definition 7 is not necessarily obtained when X and Y are infinite networks. To see this,
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let pX,ωXq denote r0, 1s equipped with the Euclidean distance, and let pY, ωY q denote QX r0, 1s
with the restriction of the Euclidean distance. Since the closure of Y in r0, 1s is justX , the Hausdorff
distance between X and Y is zero (recall that given A,B � R, we have dRHpA,Bq � 0 if and
only if A � B [7, Proposition 7.3.3]). It follows from the definition of dGH (Definition 4) and the
equivalence of dN and dGH on metric spaces (Remark 6) that dN pX, Y q � 0.

However, one cannot define an optimal correspondence between X and Y . To see this, assume
towards a contradiction that Ropt is such an optimal correspondence, i.e. dispRoptq � 0. For each
x P X , there exists yx P Y such that px, yxq P Ropt. By making a choice of yx P Y for each x P X ,
define a map f : X Ñ Y given by x ÞÑ yx. Then dXpx, x1q � dY pfpxq, fpx

1qq for each x, x1 P X .
Thus f is an isometric embedding from X into itself (note that Y � X). But X � r0, 1s is compact,
and an isometric embedding from a compact metric space into itself must be surjective [7, Theorem
1.6.14]. This is a contradiction, because fpXq � Y � X .

We observe that dN pX, Y q � 0 and so X and Y are weakly isomorphic of Type II, but not of
Type I. To see this, assume towards a contradiction that X and Y are Type I weakly isomorphic.
Let Z be a set with surjective maps ϕX : Z Ñ X and ϕY : Z Ñ Y satisfying ωX � pϕX , ϕXq �
ωY �pϕY , ϕY q. Then tpϕXpzq, ϕY pzqq : z P Zu is an optimal correspondence. This is a contradiction
by the previous reasoning.

Recall that our motivation for introducing notions of isomorphism on N was to determine which
networks deserve to be considered equivalent. It is easy to see that strong isomorphism induces an
equivalence class on N . The same is true for both types of weak isomorphism, and we record this
result in the following proposition.

Proposition 10. Weak isomorphism of Types I and II both induce equivalence relations on N .

In the setting of FN , it is not difficult to show that the two types of weak isomorphism coincide.
This is the content of the next proposition. By virtue of this result, there is no ambiguity in dropping
the “Type I/II” modifier when saying that two finite networks are weakly isomorphic.

Proposition 11. Let X, Y P FN be finite networks. Then X and Y are Type I weakly isomorphic
if and only if they are Type II weakly isomorphic.

Type I weak isomorphisms will play a vital role in the content of this paper, but for now, we focus
on Type II weak isomorphism. The next theorem justifies calling dN a network distance, and shows
that dN is compatible with Type II weak isomorphism.

Theorem 12. dN is a metric on N modulo Type II weak isomorphism.

A B C

x

y
z u

v

w

p

q

r

s

2

3

1

1

2

3

1

1

2

3

1

1

Ψ3
Apx, y, zq �

�
2 2 1
2 2 1
1 1 3

	
Ψ3
Bpu, v, wq �

�
2 1 1
1 3 3
1 3 3

	
Ψ4
Cpp, q, r, sq �

�
2 2 1 1
2 2 1 1
1 1 3 3
1 1 3 3




FIGURE 3. Note that Remark 8 does not fully characterize weak isomorphism, even
for finite networks: All three networks above, with the given weight matrices, are
Type I weakly isomorphic since C maps surjectively onto A and B. But there are no
surjective, weight preserving maps AÑ B or B Ñ A.
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The proof is in Appendix A. For finite networks, we immediately obtain:

The restriction of dN to FN yields a metric modulo Type I weak isomorphism.

The proof of Proposition 11 will follow from the proof of Theorem 12. In fact, an even stronger
result is true: weak isomorphism of Types I and II coincide for compact networks as well. We
present the statement below, and dedicate Section 3.2 to its proof.

Theorem 13 (Weak isomorphism in CN ). Let X, Y P CN . Then X and Y are Type II weakly
isomorphic if and only if X and Y are Type I weakly isomorphic, i.e. there exists a set V and
surjections ϕX : V Ñ X, ϕY : V Ñ Y such that:

ωXpϕXpvq, ϕXpv
1qq � ωY pϕY pvq, ϕY pv

1qq for all v, v1 P V.

We end the current subsection with the following definition, which will be used heavily in §3.

Definition 10 (ε-approximations). Let ε ¡ 0. A network pX,ωXq P N is said to be ε-approximable
by pY, ωY q P N if dN pX, Y q   ε. In this case, Y is said to be an ε-approximation of X . Typically,
we will be interested in the case where X is infinite and Y is finite, i.e. in ε-approximating infinite
networks by finite networks.

2.1. The second network distance. Even though the definition of dN is very general, in some
restricted settings it may be convenient to consider a network distance that is easier to formulate.
For example, in computational purposes it suffices to assume that we are computing distances
between finite networks. Also, a reduction in computational cost is obtained if we restrict ourselves
to computing distortions of bijections instead of general correspondences. The next definition arises
from such considerations.

Definition 11 (The second network distance). Let pX,ωXq, pY, ωY q P FN be such that cardpXq �
cardpY q. Then define:

pdN pX, Y q :�
1

2
inf
ϕ

sup
x,x1PX

��ωXpx, x1q � ωY pϕpxq, ϕpx
1qq

��,
where ϕ : X Ñ Y ranges over all bijections from X to Y .

Notice that pdN pX, Y q � 0 if and only if X �s Y . Also, pdN satisfies symmetry and triangle
inequality. It turns out via Example 14 that dN and pdN agree on networks over two nodes. However,
the two notions do not agree in general. In particular, a minimal example where dN � pdN occurs
for three node networks, as we show in Remark 15.

Example 14 (Networks with two nodes). Let pX,ωXq, pY, ωY q P FN where X � tx1, x2u and
Y � ty1, y2u. Then we claim dN pX, Y q � pdN pX, Y q. Furthermore, if X � N2

��
α δ
β γ

��
and

Y � N2

��
α1 δ1

β1 γ1

��
, then we have the explicit formula:

dN pX, Y q �
1

2
min pΓ1,Γ2q , where

Γ1 � max p|α � α1|, |β � β1|, |δ � δ1|, |γ � γ1|q ,

Γ2 � max p|α � γ1|, |γ � α1|, |δ � β1|, |β � δ1|q .

Details for this calculation are in §A.
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Remark 15 (A three-node example where dN � pdN ). Assume pX,ωXq and pY, ωY q are two
networks with the same cardinality. Then

dN pX, Y q ¤ pdN pX, Y q.
The inequality holds because each bijection induces a correspondence, and we are minimizing

over all correspondences to obtain dN . However, the inequality may be strict, as demonstrated
by the following example. Let X � tx1, . . . , x3u and let Y � ty1, . . . , y3u. Define ωXpx1, x1q �
ωXpx3, x3q � ωXpx1, x3q � 1, ωX � 0 elsewhere, and define ωY py3, y3q � 1, ωY � 0 elsewhere.
In terms of matrices, X � N3pΣXq and Y � N3pΣY q, where

ΣX �
�

1 0 1
0 0 0
0 0 1

	
and ΣY �

�
0 0 0
0 0 0
0 0 1

	
.

Define Γpx, x1, y, y1q � |ωXpx, x
1q � ωY py, y

1q| for x, x1 P X , y, y1 P Y . Let ϕ be any bijection.
Then we have:

max
x,x1PX

Γpx, x1, ϕpxq, ϕpx1qq � maxtΓpx1, x3, ϕpx1q, ϕpx3qq,Γpx1, x1, ϕpx1q, ϕpx1qq,

Γpx3, x3, ϕpx3q, ϕpx3qq,Γpϕ
�1py3q, ϕ

�1py3q, y3, y3qu

� 1.

So pdN pX, Y q � 1
2
. On the other hand, consider the correspondence

R � tpx1, y3q, px2, y2q, px3, y3q, px2, y1qu.

Then maxpx,yq,px1y1qPR |ωXpx, x
1q � ωY py, y

1q| � 0. Thus dN pX, Y q � 0   pdN pX, Y q.
Example 16 (Networks with three nodes). Let pX,ωXq, pY, ωY q P FN , where we write X �

tx1, x2, x3u and Y � ty1, y2, y3u. Because we do not necessarily have dN � pdN on three node
networks by Remark 15, the computation of dN becomes more difficult than in the two node case
presented in Example 14. A certain reduction is still possible, which we present next. Consider the
following list L of matrices representing correspondences, where a 1 in position pi, jq means that
pxi, yjq belongs to the correspondence.�

1
1

1

	 �
1

1
1

	 �
1
1

1 1

	 �
1 1

1
1

	 �
1

1 1
1

	
�

1
1

1

	 �
1

1
1

	 �
1
1

1 1

	 �
1 1

1
1

	 �
1

1 1
1

	
�

1
1

1

	 �
1

1
1

	 �
1
1

1 1

	 �
1 1

1
1

	 �
1

1 1
1

	
Now let R P RpX, Y q be any correspondence. Then R contains a correspondence S P RpX, Y q

such that the matrix form of S is listed in L. Thus dispRq ¥ dispSq, since we are maximizing over a
larger set. It follows that dN pX, Y q is obtained by taking arg min 1

2
dispSq over all correspondences

S P RpX, Y q with matrix forms listed in L.
For an example of this calculation, let S denote the correspondence tpx1, y1q, px2, y2q, px3, y3qu

represented by the matrix
�

1
1

1

	
. Then dispSq is the maximum among the following:

|ωXpx1, x1q � ωY py1, y1q| |ωXpx1, x2q � ωY py1, y2q| |ωXpx1, x3q � ωY py1, y3q|
|ωXpx2, x1q � ωY py2, y1q| |ωXpx2, x2q � ωY py2, y2q| |ωXpx2, x3q � ωY py2, y3q|
|ωXpx3, x1q � ωY py3, y1q| |ωXpx3, x2q � ωY py3, y2q| |ωXpx3, x3q � ωY py3, y3q|.
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The following proposition provides an explicit connection between dN and pdN . An illustration is
also provided in Figure 4.

Proposition 17. Let pX,ωXq, pY, ωY q P FN . Then,

dN pX, Y q � inf
!pdN pX 1, Y 1q : X 1, Y 1 P FN , X 1 �w

I X, Y
1 �w

I Y, and cardpX 1q � cardpY 1q
)
.

Remark 18 (Computational aspects of dN and pdN ). Even though pdN has a simpler formulation
than dN , computing pdN still turns out to be an NP-hard problem, as we discuss in §5. Moreover, we
show in Theorem 47 that computing dN is at least as hard as computing pdN .

Instead of trying to compute dN , we will focus on finding network invariants that can be computed
easily. This is the content of §4. For each of these invariants, we will prove a stability result to
demonstrate its validity as a proxy for dN .

2.2. Special families: dissimilarity networks and directed metric spaces. The second network
distance pdN that we introduced in the previous section turned out to be compatible with strong
isomorphism. Interestingly, by narrowing down the domain of dN to the setting of compact
dissimilarity networks, we obtain a subfamily of N where dN is compatible with strong isomorphism.
A dissimilarity network is a network pX,AXq where AX is a map from X � X to R�, and
AXpx, x

1q � 0 if and only if x � x1. Neither symmetry nor triangle inequality is assumed. We
denote the collection of all such networks as FN dis, CN dis, and N dis for the finite, compact, and
general settings, respectively.

Theorem 19 ([11]). The restriction of dN to FN dis is a metric modulo strong isomorphism.

The expression for dN was used in the context of FN dis in [11, 12] to study the stability properties
of hierarchical clustering methods on metric spaces and directed dissimilarity networks. That setting
is considerably simpler than the situation in this paper, because in general we allow dN pX, Y q � 0
for X, Y P N even when X and Y are not strongly isomorphic. In Theorem 23 below, we provide
an extension of Theorem 19 to a class of compact dissimilarity networks that contains all finite
dissimilarity networks.

y1

y2 y3

Y

x1 x2

X

y1

y2 y3

Y

x1

x21 x22

Z

3
5 5

1

3 3

0

5 5

1

FIGURE 4. The two networks on the left have different cardinalities, but computing
correspondences shows that dN pX, Y q � 1. Similarly one computes dN pX,Zq � 0,
and thus dN pY, Zq � 0 by triangle inequality. On the other hand, the bijection given
by the red arrows shows pdN pY, Zq � 1. Applying Proposition 17 then recovers
dN pX, Y q � 1.
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Example 20. Finite metric spaces and finite ultrametric spaces constitute obvious examples of
dissimilarity networks. Recall that, in an ultrametric space pX, dXq, we have the strong triangle
inequality dXpx, x1q ¤ max tdXpx, x

2q, dXpx
2, x1qu for all x, x1, x2 P X . More interesting classes

of dissimilarity networks arise by relaxing the symmetry and triangle inequality conditions of metric
spaces.

Definition 12 (Finite reversibility and Ψ-controllability). The reversibility ρX of a dissimilarity
network pX,AXq is defined to be the following quantity:

ρX :� sup
x�x1PX

AXpx, x
1q

AXpx1, xq
.

pX,AXq is said to have finite reversibility if ρX   8. Notice that ρX ¥ 1, with equality if and only
if AX is symmetric.

Next let Ψ : R� � R� Ñ R� be a continuous function such that Ψp0, 0q � 0. A dissimilarity
network pX,AXq is said to be Ψ-controlled if we have

AXpx, x
1q ¤ Ψ

�
AXpx, x

2q, AXpx
1, x2q

�
for all x, x1, x2 P X.

This condition automatically encodes a notion of reversibility:

AXpx, x
1q ¤ Ψ

�
AXpx, xq, AXpx

1, xq
�
� Ψ

�
0, AXpx

1, xq
�
,

AXpx
1, xq ¤ Ψ

�
AXpx

1, x1q, AXpx, x
1q
�
� Ψ

�
0, AXpx, x

1q
�
.

In the sequel, whenever we write “pX,AXq P N dis is Ψ-controlled” without explicit reference to a
map Ψ, we mean that there exists a function Ψ : R� � R� Ñ R� satisfying the conditions above.

Remark 21. Any finite dissimilarity network is finitely reversible and Ψ-controllable. For example,
Ψ can be taken to be a bump function that vanishes outside R2

�zU—where U is some open set
containing impAXq and excluding p0, 0q—and constant at maxx,x1PX AXpx, x

1q on U .

Dissimilarity networks satisfying the symmetry condition, but not the triangle inequality, have a
long history dating back to Fréchet’s thesis [33] and continuing with work by Pitcher and Chittenden
[78], Niemytzki [67], Galvin and Shore [34, 35], and many others, as summarized in [43]. One of
the interesting directions in this line of work was the development of a “local triangle inequality”
and related metrization theorems [67], which has been continued more recently in [99].

Dissimilarity networks satisfying the triangle inequality, but not symmetry, include the special
class of objects called directed metric spaces, which we define below.

Definition 13. Let pX,AXq be a dissimilarity network. Given any x P X and r P R�, the
forward-open ball of radius r centered at x is

B�px, rq :� tx1 P X : AXpx, x
1q   ru .

The forward-open topology induced by AX is the topology on X generated by the collection
tB�px, rq : x P X, r ¡ 0u. The idea of forward open balls is prevalent in the study of Finsler
geometry; see [2, p. 149] for details.

Definition 14 (Directed metric spaces). A directed metric space or quasi-metric space is a dissimi-
larity network pX, νXq such that X is equipped with the forward-open topology induced by νX and
νX : X �X Ñ R� satisfies:

νXpx, x
2q ¤ νXpx, x

1q � νXpx
1, x2q for all x, x1, x2 P X.
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The function νX is called a directed metric or quasi-metric on X . Notice that compact directed
metric spaces constitute a subfamily of CN dis.

Directed metric spaces with finite reversibility were studied in [84], and constitute important
examples of networks that are strictly non-metric. More specifically, the authors of [84] extended
notions of Hausdorff distance and Gromov-Hausdorff distance to the setting of directed metric
spaces with finite reversibility, and our network distance dN subsumes this theory while extending
it to even more general settings.

Remark 22 (Finsler metrics). An interesting class of directed metric spaces arises from studying
Finsler manifolds. A Finsler manifold pM,F q is a smooth, connected manifold M equipped with
an asymmetric norm F (called a Finsler function) defined on each tangent space of M [2]. A Finsler
function induces a directed metric dF : M �M Ñ R� as follows: for each x, x1 PM ,

dF px, x
1q :� inf

"» b

a

F pγptq, 9γptqq dt : γ : ra, bs ÑM a smooth curve joining x and x1
*
.

Finsler metric spaces have received interest in the applied literature. In [81], the authors prove
that Finsler metric spaces with reversible geodesics (i.e. the reverse curve γ1ptq :� γp1� tq of any
geodesic γ : r0, 1s ÑM is also a geodesic) is a weighted quasi-metric [81, p. 2]. Such objects have
been shown to be essential in biological sequence comparison [94].

We end this section with a strengthening of Theorem 19 to the setting of compact networks.
Recall that the interesting part of Theorem 19 was to show that dN pX, Y q � 0 ùñ X �s Y ; we
generalize this result to a certain class of compact dissimilarity networks.

Theorem 23. Let pX,AXq, pY,AY q P CN dis be equipped with the forward-open topologies induced
by AX and AY , respectively. Suppose also that at least one of the two networks is Ψ-controlled.
Then dN pX, Y q � 0 ùñ X �s Y .

Remark 24 (Generalizations of Theorem 19). For any finite dissimilarity network pX,AXq, the
discrete topology is precisely the topology induced by AX . We have already stated before that finite
dissimilarity networks trivially satisfy finite reversibility and triangulability. It folows that Theorem
23 is a bona fide generalization of Theorem 19.

We will present a further generalization in the setting of compact dissimilarity networks—where
the restrictions on topology and weights are further relaxed—in a forthcoming publication.

2.3. Two families of examples: the directed circles. In this section, we explicitly construct an
infinite network in N dis, and a family of infinite networks in CN dis.

2.3.1. The general directed circle. First we construct an asymmetric network in N dis. To motivate
this construction, recall from the classification of topological 1-manifolds that any connected, closed
topological 1-manifold is homeomorphic to the circle S1. So as a first construction of a quasi-metric
space, it is reasonable to adopt S1 as our model and endow it with a quasi-metric weight function.

First define the set ~S1 :�
 
eiθ P C : θ P r0, 2πq

(
. For any α, β P r0, 2πq, define ~dpα, βq :�

β � α mod 2π, with the convention ~dpα, βq P r0, 2πq. Then ~dpα, βq is the counterclockwise
geodesic distance along the unit circle from eiα to eiβ. As such, it satisfies the triangle inequality
and vanishes on a pair peiθ1 , eiθ2q if and only if θ1 � θ2. Next for each eiθ1 , eiθ2 P ~S1, define

ω~S1pe
iθ1 , eiθ2q :� ~dpθ1, θ2q.
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To finish the construction, we specify ~S1 to have the discrete topology. Clearly this is first
countable and makes ω~S1 continuous, but the resulting network will not be compact. Hence it is
natural to ask if there exists a coarser topology that we can place on ~S1.

We claim that a coarser topology does not work to make p~S1, ω~S1q fit the framework of N . To
see why, let α P r0, 2πq. Suppose ω~S1 is continuous with respect to some topology on ~S1, to be
determined. Fix 0   ε ! 2π, and define V :� ω�1

~S1
rp�ε, εqs. Then V is open in the product

topology, and in particular contains peiα, eiαq. Since V is a union of open rectangles, there exists an
open set U � ~S1 such that peiα, eiαq P U �U � V . Suppose towards a contradiction that U � teiαu.
Then there exists eiβ P U , for some β � α. Then ω~S1pe

iα, eiβq P p0, εq. But by the definition of ω~S1 ,
we must have ω~S1pe

iβ, eiαq P r2π � ε, 2πq, which is a contradiction to having ω~S1pU,Uq � p�ε, εq.

Definition 15. We define the directed unit circle to be p~S1, ω~S1q with the discrete topology.

This asymmetric network provides us with concrete examples of ε-approximations (Definition
10), for any ε ¡ 0. To see this, fix any n P N, and consider the directed circle network on n nodes
p~S1

n, ω~S1nq obtained by writing

~S1
n :�

!
e

2πik
n P C : k P t0, 1, . . . , n� 1u

)
,

and defining ω~S1n to be the restriction of ω~S1 on this set. An illustration of ~S1 and ~S1
n for n � 6 is

provided in Figure 5.

Theorem 25. As nÑ 8, the sequence of finite dissimilarity networks ~S1
n limits to the dissimilarity

network ~S1 in the sense of dN .

Proof of Theorem 25. Let ε ¡ 0, and let n P N be such that 2π{n   ε. It suffices to show that
dN p~S1, ~S1

nq   ε. Define a correspondence between ~S1 and ~S1
n as follows:

R :�
!
peiθ, e

2πik
n q : θ P p2πipk�1q

n
, 2πik

n
s, k P t0, 1, 2, . . . , n� 1u

)
.

Here each point of ~S1 is placed in correspondence with the closest point on ~S1
n obtained by traveling

counterclockwise on ~S1. Next let 0 ¤ θ1 ¤ θ2   2π, and let j, k P t0, 1, . . . , n� 1u be such that
θ1 P p

2πipj�1q
n

, 2πij
n
s and θ2 P p

2πipk�1q
n

, 2πik
n
s. Then we have:

|ω~S1pe
iθ1 , eiθ2q � ω~S1pe

2πij
n , e

2πik
n q| � |θ2 � θ1 �

2πik
n
� 2πij

n
|

¤ |2πik
n
� θ2| � |2πij

n
� θ1|   4π{n   2ε.

Similarly we have:

|ω~S1pe
iθ2 , eiθ1q � ω~S1pe

2πik
n , e

2πij
n q| � |2π � θ2 � θ1 � 2π � 2πik

n
� 2πij

n
|   2ε.

It follows that dispRq   2ε. Thus dN p~S1, ~S1
nq   ε. The theorem follows. �

2.3.2. The directed circles with finite reversibility. Now we define a family of directed circles
parametrized by reversibility. Unlike the construction in §2.3.1, these directed networks belong to
the family CN dis. An illustration is provided in Figure 5.

Recall from §2.3.1 that for α, β P r0, 2πq, we wrote ~dpα, βq to denote the counterclockwise
geodesic distance along the unit circle from eiα to eiβ . Fix ρ ¥ 1. For each eiθ1 , eiθ2 P ~S1, define

ω~S1,ρpe
iθ1 , eiθ2q :� min

�
~dpθ1, θ2q, ρ~dpθ2, θ1q

	
.
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p~S1, ω~S1q ~S16

e
4π
6 e

2π
6

e0

e
10π
6e

8π
6

e
6π
6

2π
6

2π
6

2π
6

2π
6

2π
6

2π
6

p~S1, ω~S1,ρq

FIGURE 5. The directed circle p~S1, ω~S1q, the directed circle on 6 nodes p~S1
6, ω~S16

q,
and the directed circle with reversibility ρ, for some ρ P r1,8q. Traveling in a
clockwise direction is possibly only in the directed circle with reversibility ρ, but
this incurs a penalty modulated by ρ.

In particular, ω~S1,ρ has reversibility ρ (cf. Definition 12).
Finally, we equip ~S1 with the standard subspace topology generated by the open balls in C. In

this case, ~S1 is compact and first countable. It remains to check that ω~S1,ρ is continuous.

Proposition 26. ω~S1,ρ : ~S1 � ~S1 Ñ R is continuous.

Proof of Proposition 26. It suffices to show that the preimages of basic open sets under ω~S1,ρ are
open. Let pa, bq be an open interval in R. Let peiα, eiβq P ω�1

~S1,ρ
rpa, bqs, where α, β P r0, 2πq. There

are three cases: (1) α   β, (2) β   α, or (3) α � β.
Suppose first that α   β. There are two subcases: either ω~S1,ρpe

iα, eiβq � ~dpα, βq, or � ρ~dpβ, αq.
Fix r ¡ 0 to be determined later, but small enough so that Bpα, rq X Bpβ, rq � ∅. Let

γ P Bpα, rq, δ P Bpβ, rq. Then ~dpγ, δq P Bp~dpα, βq, 2rq. Also,���ρ~dpγ, δq � ρ~dpα, βq
��� � ρ

���~dpγ, δq � ~dpα, βq
���   2rρ.

Now r can be made arbitrarily small, so that for any γ P Bpα, rq and any δ P Bpδ, rq, we
have ω~S1,ρpe

iγ, eiδq P pa, bq. It follows that peiα, eiβq is contained in an open set contained inside
ω�1
~S1,ρ
rpa, bqs. An analogous proof shows this to be true for the β   α case.

Next suppose α � β. Fix 0   r   b{p2ρq. We need to show ω~S1,ρpBpα, rq, Bpα, rqq � pa, bq.
Note that 0 P pa, bq. Let γ, δ P Bpα, rq. There are three subcases. If γ � δ, then ω~S1,ρpe

iγ, eiδq �

0 P pa, bq. If ~dpγ, δq   2r, then ω~S1,ρpe
iγ, eiδq   2r   b. Finally, suppose ~dpγ, δq ¥ 2r. Then we

must have ~dpδ, γq   2r, so ω~S1,ρpe
iγ, eiδq ¤ ρ~dpδ, γq   2rρ   b. Thus for any γ, δ P Bpα, rq, we

have ω~S1,ρpe
iγ, eiδq P pa, bq.

It follows that ω�1
~S1,ρ
rpa, bqs is open. This proves the claim. �

We summarize the preceding observations in the following:

Definition 16. Let ρ P r1,8q. We define the directed unit circle with reversibility ρ to be p~S1, ω~S1,ρq.

This is a compact, asymmetric network in CN dis.
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Remark 27. Just as in Theorem 25, we can finitely approximate p~S1, ω~S1,ρq by endowing uniformly
distributed points on ~S1 with the restriction of ω~S1,ρ. We do not repeat the details here.

Remark 28 (Directed circle with finite reversibility—forward-open topology version). Instead of
using the subspace topology generated by the standard topology on C, we can also endow p~S1, ω~S1,ρq
with the forward-open topology generated by ω~S1,ρ. The open balls in this topology are precisely the
open balls in the subspace topology induced by the standard topology, the only adjustment being the
“center” of each ball. The directed metric space p~S1, ω~S1,ρq equipped with the forward-open topology
is another example of a compact, asymmetric network in CN dis.

3. THE CASE OF COMPACT NETWORKS

In this section, we characterize the compact networks in the metric space pN { �w
II , dN q, where

dN : N { �w
II �N { �w

IIÑ R� is defined (abusing notation) as follows:

dN prXs, rY sq :� dN pX, Y q, for each rXs, rY s P N { �w
II .

To check that dN is well-defined on rXs, rY s P N { �w
II , let X 1 P rXs, Y 1 P rY s. Then:

dN prX
1s, rY 1sq � dN pX

1, Y 1q � dN pX, Y q � dN prXs, rY sq,

where the second-to-last equality follows from the triangle inequality and the observation that
dN pX,X

1q � dN pY, Y
1q � 0.

Our main result is that the two types of weak isomorphism coincide in the setting of compact
networks. As a stepping stone towards proving this result, we explore the notion of “sampling”
finite networks from compact networks.

3.1. Compact networks and finite sampling. In this section, we prove that any compact network
admits an approximation by a finite network up to arbitrary precision, in the sense of dN .

Example 29 (Some compact and noncompact networks). In §2.3.1, we constructed an example
of a noncompact, asymmetric network. In Section 2.3.2, we constructed a family of compact,
asymmetric networks: the directed circles with reversibility ρ P r1,8q. We also remarked that
p~S1, ω~S1,ρq can be “approximated” up to arbitrary precision by picking n equidistant points on ~S1 and
equipping this collection with the restriction of ω~S1,ρ (also see Theorem 25). We view this process as
“sampling” finite networks from a compact network. In the next result, we present this sampling
process as a theorem that applies to any compact network.

Theorem 30 (Sampling from a compact network). Let pX,ωXq be a compact network. Then for
any ε ¡ 0, we can choose a finite subset X 1 � X such that

dN ppX,ωXq, pX
1, ωX |X 1�X 1qq   ε.

Remark 31. When considering a compact metric space pX, dXq, the preceding theorem relates
to the well-known notion of taking finite ε-nets in a metric space. Recall that for ε ¡ 0, a subset
S � X is an ε-net if for any point x P X , we have Bpx, εq X S � ∅. Such an ε-net satisfies the
nice property that dGHpX,Sq   ε [7, 7.3.11]. In particular, one can find a finite ε-net of pX, dXq for
any ε ¡ 0 by compactness.

Observe that we do not make quantitative estimates on the cardinality of the ε-approximation
produced in Theorem 30. In the setting of compact metric spaces, the size of an ε-net relates to the
rich theory of metric entropy developed by Kolmogorov and Tihomirov [28, Chapter 17].
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By virtue of Theorem 30, one can always approximate a compact network up to any given
precision. The next theorem implies that a sampled network limits to the underlying compact
network as the sample gets more and more dense.

Theorem 32 (Limit of dense sampling). Let pX,ωXq be a compact network, and let S � ts1, s2, . . .u
be a countable dense subset of X with a fixed enumeration. For each n P N, let Xn be the finite
network with node set ts1, . . . , snu and weight function ωX |Xn�Xn . Then we have:

dN pX,Xnq Ó 0 as nÑ 8.

3.1.1. Proofs of result in §3.1.

Proof of Theorem 30. The idea is to find a cover of X by open sets G1, . . . , Gq and representatives
xi P Gi for each 1 ¤ i ¤ q such that whenever we have px, x1q P Gi �Gj , we know by continuity
of ωX that |ωXpx, x1q � ωXpxi, xjq|   ε. Then we define a correspondence that associates each
x P Gi to xi, for 1 ¤ i ¤ q. Such a correspondence has distortion bounded above by ε.

Let ε ¡ 0. Let B be a base for the topology on X .
Let tBpr, ε{4q : r P Ru be an open cover for R. Then by continuity of ωX , we get that 

ω�1
X rBpr, ε{4qs : r P R

(
is an open cover for X �X . Each open set in this cover can be written as a union of open rectangles
U � V , for U, V P B. Thus the following set is an open cover of X �X:

U :�
 
U � V : U, V P B, U � V � ω�1

X rBpr, ε{4qs, r P R
(
.

Claim 1. There exists a finite open cover G � tG1, . . . , Gqu of X such that for any 1 ¤ i, j ¤ q,
we have Gi �Gj � U � V for some U � V P U .

Proof of Claim 1. The proof of the claim proceeds by a repeated application of the Tube Lemma
[65, Lemma 26.8]. Since X �X is compact, we take a finite subcover:

U f :� tU1 � V1, . . . , Un � Vnu, for some n P N.

Let x P X . Then we define:

U f
x :� tU � V P U f : x P Uu,

and write
U f
x �

!
Ux
i1
� V x

i1
, . . . , Ux

impxq
� V x

impxq

)
.

Here mpxq is an integer depending on x, and
 
i1, . . . , impxq

(
is a subset of t1, . . . , nu.

Since U f is an open cover of X � X , we know that U f
x is an open cover of txu � X . Next

define:

Ax :�

mpxq£
k�1

Ux
ik
.

Then Ax is open and contains x. In the literature [65, p. 167], the set Ax�X is called a tube around
txu�X . Notice that Ax�X � U f

x . Since x was arbitrary in the preceding construction, we define
U f
x andAx for each x P X . Then note that tAx : x P Xu is an open cover ofX . Using compactness

of X , we choose ts1, . . . , spu � X, p P N, such that
 
As1 , . . . , Asp

(
is a finite subcover of X .

Once again let x P X , and let U f
x and Ax be defined as above. Define the following:

Bx :�
 
Ax � V x

ik
: 1 ¤ k ¤ mpxq

(
.
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Since x P Ax and X � Y
mpxq
k�1 V

x
ik

, it follows that Bx is a cover of txu � X . Furthermore, since 
As1 , . . . , Asp

(
is a cover of X , it follows that the finite collection

 
Bs1 , . . . , Bsp

(
is a cover of

X �X .
Let z P X . Since X � Y

mpxq
k�1 V

x
ik

, we pick V x
ik

for 1 ¤ k ¤ mpxq such that z P V x
ik

. Since x was
arbitrary, such a choice exists for each x P X . Therefore, we define:

Cz :� tV P B : z P V, Asi � V P Bsi for some 1 ¤ i ¤ pu .

Since each Bsi is finite and there are finitely many Bsi , we know that Cz is a finite collection.
Next define:

Dz :�
£
V PCz

V.

Then Dz is open and contains z. Notice that X �Dz is a tube around X � tzu. Next, using the fact
that tAsi : 1 ¤ i ¤ pu is an open cover of X , pick Asipzq such that z P Asipzq . Here 1 ¤ ipzq ¤ p is
some integer depending on z. Then define

Gz :� Dz X Asipzq .

Then Gz is open and contains z. Since z was arbitrary, we define Gz for each z P X . Then
tGz : z P Xu is an open cover of X , and we take a finite subcover:

G :� tG1, . . . , Gqu, q P N.

Finally, we need to show that for any choice of 1 ¤ i, j ¤ q, we have Gi�Gj � U �V for some
U � V P U . Let 1 ¤ i, j ¤ q. Note that we can write Gi � Gw and Gj � Gy for some w, y P X .
By the definition of Gw, we then have the following for some index ipwq depending on w:

Gw � Asipwq � U sipwq for some U sipwq � V sipwq P U f
sipwq

, 1 ¤ ipwq ¤ p.

Note that the second containment holds by definition ofAsipwq . Since U f
sipwq

is a cover of
 
sipwq

(
�X ,

we choose V sipwq to contain y. Then observe that Asipwq � V sipwq P Bsipwq . Then V sipwq P Cy, and so
we have:

Gy � Dy � V sipwq .

It follows that Gi �Gj � Gw �Gy � Uxipwq � V xipwq P U . �

Now we fix G � tG1, . . . , Gqu as in Claim 1. Before defining X 1, we perform a disjointification
step. Define:rG1 :� G1, rG2 :� G2z rG1, rG3 :� G3zp rG1 Y rG2q, . . . , rGq :� Gqz

�
Yq�1
k�1

rGk

	
.

Finally we define X 1 as follows: pick a representative xi P rGi for each 1 ¤ i ¤ q. Let
X 1 � txi : 1 ¤ i ¤ qu. Define a correspondence between X and X 1 as follows:

R :�
!
px, xiq : x P rGi, 1 ¤ i ¤ q

)
.

Let px, xiq, px1, xjq P R. Then we have px, x1q, pxi, xjq P rGi� rGj � Gi�Gj . By the preceding work,
we know thatGi�Gj � U�V , for some U�V P U . Therefore ωXpx, x1q, ωXpxi, xjq P Bpr, ε{4q
for some r P R. It follows that:

|ωXpx, x
1q � ωXpxi, xjq|   ε{2.

Since px, xiq, px1, xjq P R were arbitrary, we have dispRq   ε{2. Hence dN pX,X 1q   ε. �
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Proof of Theorem 32. The first part of this proof is similar to that of Theorem 30. Let ε ¡ 0. Let B
be a base for the topology on X . Then

 
ω�1
X rBpr, ε{8qs : r P R

(
is an open cover for X �X . Each

open set in this cover can be written as a union of open rectangles U � V , for U, V P B. Thus the
following set is an open cover of X �X:

U :�
 
U � V : U, V P B, U � V � ω�1

X rBpr, ε{8qs, r P R
(
.

By applying Claim 1 from the proof of Theorem 30, we obtain a finite open cover G � tG1, . . . , Gqu
of X such that for any 1 ¤ i, j ¤ q, we have Gi � Gj � U � V for some U � V P U . For
convenience, we assume that each Gi is nonempty.

Now let 1 ¤ i ¤ q. Then Gi X S � ∅, because S is dense in X . Choose ppiq P N such that
sppiq P Gi. We repeat this process for each 1 ¤ i ¤ q, and then define

n :� max tpp1q, pp2q, . . . , ppqqu .

Now define Xn to be the network with node set ts1, s2, . . . , snu and weight function given by the
appropriate restriction of ωX . Also define Sn to be the network with node set

 
spp1q, spp2q, . . . , sppqq

(
and weight function given by the restriction of ωX .

Claim 2. Let A be a subset of X equipped with the weight function ωX |A�A. Then dN pSn, Aq  
ε{2.

Proof of Claim 2. We begin with G � tG1, . . . , Gqu. Notice that each Gi contains sppiq. To avoid
ambiguity in our construction, we will need to ensure that Gi does not contain sppjq for i � j. So
our first step is to obtain a cover of A by disjoint sets while ensuring that each sppiq P Sn belongs to
exactly one element of the new cover. We define:

G�
1 :� G1zSn, G

�
2 :� G2zSn, G

�
3 :� G3zSn, . . . , G

�
q :� GqzSn, andrG1 :� G�

1 Y
 
spp1q

(
, rG2 :� pG�

2z rG1q Y
 
spp2q

(
, rG3 :�

�
G�

3zp rG1 Y rG2q
	
Y
 
spp3q

(
, . . . ,

rGq :�
�
G�
q z
�
Yq�1
k�1

rGk

		
Y
 
sppqq

(
.

Notice that
! rGi : 1 ¤ i ¤ q

)
is a cover for A, and for each 1 ¤ i ¤ q, rGi contains sppjq if and only

if i � j. Now we define a correspondence between A and Sn as follows:

R :�
!
px, sppiqq : x P AX rGi, 1 ¤ i ¤ q

)
.

Next let px, sppiqq, px1, sppjqq P R. Then we have px, x1q, psppiq, sppjqq P rGi� rGj � Gi�Gj � U�V
for some U � V P U . Therefore ωXpx, x1q and ωXpsppiq, sppjqq both belong to Bpr, ε{8q for some
r P R. Thus we have:

|ωXpx, x
1q � ωXpsppiq, sppjqq|   ε{4.

It follows that dispRq   ε{4, and so dN pA, Snq   ε{2. �

Finally, we note that dN pX,Xnq ¤ dN pX,Snq � dN pSn, Xnq   ε{2 � ε{2 � ε, by Claim 2.
Since ε ¡ 0 was arbitrary, it follows that dN pX,Xnq Ñ 0.

For the final statement in the theorem, let m ¥ n and observe that Sn � Xn � Xm. Thus
whenever we have dN pX,Xnq   ε, we also have dN pX,Xmq   ε. It follows that:

dN pX,Xmq ¤ dN pX,Xnq for any m,n P N, m ¥ n. �
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3.2. Compact networks and weak isomorphism. By Theorem 12, dN is a proper metric on N
modulo Type II weak isomorphism, which is equivalent to Type I weak isomorphism when restricted
to FN . The comparison between QX r0, 1s and r0, 1s in Example 9 shows that in general, these
two notions of weak isomorphism are not equivalent. This leads to the following natural question:
when restricted to CN , are we still able to recover equivalence between Type I and Type II weak
isomorphism?

In the following theorem, we provide a positive answer to this question.

Theorem 13 (Weak isomorphism in CN ). Let X, Y P CN . Then X and Y are Type II weakly
isomorphic if and only if X and Y are Type I weakly isomorphic, i.e. there exists a set V and
surjections ϕX : V Ñ X, ϕY : V Ñ Y such that:

ωXpϕXpvq, ϕXpv
1qq � ωY pϕY pvq, ϕY pv

1qq for all v, v1 P V.

Proof of Theorem 13. By the definition of �w
I , it is clear that if X �w

I Y , then dN pX, Y q � 0, i.e.
X �w

II Y (cf. Theorem 12).
Conversely, suppose dN pX, Y q � 0. Our strategy is to obtain a set Z � X � Y with canonical

projection maps πX : Z Ñ X, πY : Z Ñ Y and surjections ψX : X Ñ πXpZq, ψY : Y Ñ πY pZq
as in the following diagram:

X Y

X YπXpZq

Z

πY pZq�w
I �w

I �w
I

ψXidX idYψYπX πY

Furthermore, we will require:

ωXpπXpzq, πXpz
1qq � ωY pπY pzq, πY pz

1qq for all z, z1 P Z, (2)

ωXpx, x
1q � ωXpψXpxq, ψXpx

1qq for all x, x1 P X, (3)

ωY py, y
1q � ωY pψY pyq, ψY py

1qq for all y, y1 P Y. (4)

As a consequence, we will obtain a chain of Type I weak isomorphisms

X �w
I πXpZq �

w
I πY pZq �

w
I Y.

Since Type I weak isomorphism is an equivalence relation (Proposition 10), it will follow that X
and Y are Type I weakly isomorphic.

By applying Theorem 30, we choose sequences of finite subnetworks tXn � X : n P Nu and
tYn � Y : n P Nu such that dN pXn, Xq   1{n and dN pYn, Y q   1{n for each n P N. By the
triangle inequality, dN pXn, Ynq   2{n for each n.

For each n P N, let Tn P RpXn, Xq, Pn P RpY, Ynq be such that dispTnq   2{n and dispPnq  
2{n. Define αn :� 4{n�dispTnq�dispPnq, and notice that αn Ñ 0 as nÑ 8. Since dN pX, Y q � 0
by assumption, for each n P N we let Sn P RpX, Y q be such that dispSnq   αn. Then,

dispTn � Sn � Pnq ¤ dispTnq � dispSnq � dispPnq   4{n. (cf. Remark 4)

Then for each n P N, we define Rn :� Tn � Sn � Pn P RpXn, Ynq. By Remark 4, we know that
Rn has the following expression:

Rn � tpxn, ynq P Xn � Yn : there exist x̃ P X, ỹ P Y such that pxn, x̃q P Tn,

px̃, ỹq P Sn, pỹ, ynq P Pnu.
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Next define:

S :�
 
px̃n, ỹnqnPN P pX � Y qN : px̃n, ỹnq P Sn for each n P N

(
.

SinceX, Y are first countable and compact, the productX�Y is also first countable and compact,
hence sequentially compact. Any sequence in a sequentially compact space has a convergent
subsequence, so for convenience, we replace each sequence in S by a convergent subsequence.
Next define:

Z :� tpx, yq P X � Y : px, yq a limit point of some px̃n, ỹnqnPN P Su .

Claim 3. Z is a closed subspace of X � Y . Hence it is compact and sequentially compact.

The second statement in the claim follows from the first: assuming that Z is a closed subspace of
the compact space X � Y , we obtain that Z is compact. Any subspace of a first countable space is
first countable, so Z is also first countable. Next, observe that πXpZq equipped with the subspace
topology is compact, because it is a continuous image of a compact space. It is also first countable
because it is a subspace of the first countable space X . Furthermore, the restriction of ωX to πXpZq
is continuous. Thus πXpZq equipped with the restriction of ωX is a compact network, and by similar
reasoning, we get that πY pZq equipped with the restriction of ωY is also a compact network.

Proof of Claim 3. We will show that Z � X�Y contains all its limit points. Let px, yq P X�Y be
a limit point of Z. Let tUn � X : n P N, px, yq P Unu be a countable neighborhood base of px, yq.
For each n P N, the finite intersection Vn :� Xn

i�1Ui is an open neighborhood of px, yq, and thus
contains a point pxn, ynq P Z that is distinct from px, yq (by the definition of a limit point). Pick
such an pxn, ynq for each n P N. Then pxn, ynqnPN is a sequence in Z converging to px, yq such that
pxn, ynq P Vn for each n P N.

For each n P N, note that because pxn, ynq P Z and Vn is an open neighborhood of pxn, ynq, there
exists a sequence in S converging to pxn, ynq for which all but finitely many terms are contained
in Vn. So for each n P N, let px̃n, ỹnq P Sn be such that px̃n, ỹnq P Vn. Then the sequence
px̃n, ỹnqnPN P S converges to px, yq. Thus px, yq P Z. Since px, yq was an arbitrary limit point of Z,
it follows that Z is closed. �

Proof of Equation 2. We now prove Equation 2. Let z � px, yq, z1 � px1, y1q P Z, and let
px̃n, ỹnqnPN, px̃

1
n, ỹ

1
nqnPN be elements of S that converge to px, yq, px1, y1q respectively. We wish to

show |ωXpx, x
1q � ωY py, y

1q| � 0. Let ε ¡ 0, and observe that:

|ωXpx, x
1q � ωY py, y

1q|

� |ωXpx, x
1q � ωXpx̃n, x̃

1
nq � ωXpx̃n, x̃

1
nq � ωY pỹn, ỹ

1
nq � ωY pỹn, ỹ

1
nq � ωY py, y

1q|

¤ |ωXpx, x
1q � ωXpx̃n, x̃

1
nq| � |ωXpx̃n, x̃

1
nq � ωY pỹn, ỹ

1
nq| � |ωY pỹn, ỹ

1
nq � ωY py, y

1q|.

Claim 4. Suppose we are given sequences px̃n, ỹnqnPN, px̃1n, ỹ
1
nqnPN in Z converging to px, yq and

px1, y1q in Z, respectively. Then there exists N P N such that for all n ¥ N , we have:

|ωXpx, x
1q � ωXpx̃n, x̃

1
nq|   ε{4, |ωY pỹn, ỹ

1
nq � ωY py, y

1q|   ε{4.

Proof of Claim 4. Write a :� ωXpx, x
1q, b :� ωY py, y

1q. Since ωX , ωY are continuous, we know
that ω�1

X rBpa, ε{4qs and ω�1
Y rBpb, ε{4qs are open neighborhoods of px, x1q and py, y1q. Since each

open set in the product space X �X is a union of open rectangles of the form A � A1 for A,A1

open subsets of X , we choose an open set A � A1 � ω�1
X rBpa, ε{4qs such that px, x1q P A � A1.

Similarly, we choose an open set B � B1 � ω�1
Y rBpb, ε{4qs such that py, y1q P B � B1. Then

A � B, A1 � B1 are open neighborhoods of px, yq, px1, y1q respectively. Since px̃n, ỹnqnPN and
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px̃1n, ỹ
1
nqnPN converge to px, yq and px1, y1q, respectively, we choose N P N such that for all n ¥ N ,

we have px̃n, ỹnq P A�B and px̃1n, ỹ
1
nq P A

1 �B1. The claim now follows. �

Now choose N P N such that the property in Claim 4 is satisfied, as well as the additional
property that 8{N   ε{4. Then for any n ¥ N , we have:

|ωXpx, x
1q � ωY py, y

1q| ¤ ε{4� |ωXpx̃n, x̃
1
nq � ωY pỹn, ỹ

1
nq| � ε{4.

Separately note that for each n P N, having px̃n, ỹnq, px̃
1
n, ỹ

1
nq P Sn implies that there exist

pxn, ynq and px1n, y
1
nq P Rn such that pxn, x̃nq, px1n, x̃

1
nq P Tn and pỹn, ynq, pỹ1n, y

1
nq P Pn. Thus we

can bound the middle term above as follows:

|ωXpx̃n, x̃
1
nq � ωY pỹn, ỹ

1
nq|

� |ωXpx̃n, x̃
1
nq � ωXpxn, x

1
nq � ωXpxn, x

1
nq � ωY pyn, y

1
nq � ωY pyn, y

1
nq � ωY pỹn, ỹ

1
nq|

¤ |ωXpx̃n, x̃
1
nq � ωXpxn, x

1
nq| � |ωXpxn, x

1
nq � ωY pyn, y

1
nq| � |ωY pyn, y

1
nq � ωY pỹn, ỹ

1
nq|

¤ dispTnq � dispRnq � dispPnq   8{n ¤ 8{N   ε{4.

The preceding calculations show that:

|ωXpx, x
1q � ωY py, y

1q|   ε.

Since ε ¡ 0 was arbitrary, it follows that ωXpx, x1q � ωY py, y
1q. This proves Equation 2.

It remains to define surjective maps ψX : X Ñ πXpZq, ψY : Y Ñ πY pZq and to verify Equations
3 and 4. Both cases are similar, so we only show the details of constructing ψX and verifying
Equation 3.

Construction of ψX . Let x P X . Suppose first that x P πXpZq. Then we simply define ψXpxq � x.
We also make the following observation, to be used later: for each n P N, letting y P Y be such that
px, yq P Sn, there exists xn P Xn and yn P Yn such that pxn, xq P Tn and py, ynq P Pn.

Next suppose x P XzπXpZq. For each n P N, let xn P Xn be such that pxn, xq P Tn, and let
x̃n P X be such that pxn, x̃nq P Tn. Also for each n P N, let ỹn P Y be such that px̃n, ỹnq P Sn.
Then for each n P N, let yn P Yn be such that pỹn, ynq P Pn. Then by sequential compactness of
X � Y , the sequence px̃n, ỹnqnPN has a convergent subsequence which belongs to S and converges
to a point px̃, ỹq P Z. In particular, we obtain a sequence px̃nqnPN converging to a point x̃, such that
pxn, xq and pxn, x̃nq P Tn for each n P N. Define ψXpxq � x̃.

Since x P X was arbitrary, this construction defines ψX : X Ñ πXpZq. Note that ψX is simply
the identity on πXpZq, hence is surjective.

Proof of Equation 3. Now we verify Equation 3. Let ε ¡ 0. There are three cases to check:

Case 1: x, x1 P πXpZq: In this case, we have:

|ωXpx, x
1q � ωXpψXpxq, ψXpx

1qq| � ωXpx, x
1q � ωXpx, x

1q � 0.

Case 2: x, x1 P XzπXpZq: By continuity of ωX , we obtain an open neighborhood U :�
ω�1
X rBpωXpψXpxq, ψXpx

1qq, ε{2qs of px, x1q. By the definition of ψX on XzπXpZq, we
obtain sequences px̃n, ỹnqnPN and px̃1n, ỹ

1
nqnPN in S converging to pψXpxq, ỹq and pψXpx1q, ỹ1q

for some ỹ, ỹ1 P Y . By applying Claim 4, we obtain N P N such that for all n ¥ N , we
have px̃n, x̃1nq P U . Note that we also obtain sequences pxnqnPN and px1nqnPN such that
pxn, xq, pxn, x̃nq P Tn and px1n, x

1q, px1n, x̃
1
nq P Tn. Choose N large enough so that it satisfies
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the property above and also that 4{N   ε{2. Then for any n ¥ N ,

|ωXpx, x
1q � ωXpψXpxq, ψXpx

1qq|

� |ωXpx, x
1q � ωXpxn, x

1
nq � ωXpxn, x

1
nq � ωXpx̃n, x̃

1
nq � ωXpx̃n, x̃

1
nq � ωXpψXpxq, ψXpx

1qq|

¤ dispTnq � dispTnq � ε{2   4{n� ε{2 ¤ 4{N � ε{2   ε.

Case 3: x P πXpZq, x1 P XzπXpZq: By the definition of ψX on XzπXpZq, we obtain: (1) a
sequence px̃1nqnPN converging to ψXpx1q, and (2) another sequence px1nqnPN such that px1n, x

1q
and px1n, x̃

1
nq both belong to Tn, for each n P N. By the definition of ψX on πXpZq, we

obtain a sequence pxnqnPN such that pxn, xq P Tn for each n P N.
Let U :� ω�1

X rBpωXpx, ψXpx
1qq, ε{2qs. Since px̃1nqnPN converges to ψXpx1q, we know

that all but finitely many terms of the sequence px, x̃1nqnPN belong to U . So we choose N
large enough so that for each n ¥ N , we have:

|ωXpx, x
1q � ωXpx, ψXpx

1qq|

� |ωXpx, x
1q � ωXpxn, x

1
nq � ωXpxn, x

1
nq � ωXpx, x̃

1
nq � ωXpx, x̃

1
nq � ωXpx, ψXpx

1qq|

¤ dispTnq � dispTnq � ε{2   4{n� ε{2 ¤ 4{N � ε{2   ε.

Since ε ¡ 0 was arbitrary, Equation 3 follows. The construction of ψY and proof for Equation 4
are similar. This concludes the proof of the theorem. �

As a consequence of Theorem 13, we see that weak isomorphisms of Types I and II coincide
in the setting of CN . Thus we recover a desirable notion of equivalence in the setting of compact
networks.

4. INVARIANTS OF NETWORKS

At this point, we have computed dN between several examples of networks, as in Example 14
and Remark 15. We also asserted in Remark 18 that dN is in general difficult to compute. The
solution we propose is to compute quantitatively stable invariants of networks, and compare the
invariants instead of comparing the networks directly. In this section, we restrict our attention to
computing invariants of compact networks, which satisfy the useful property that the images of the
weight functions are compact.

Intuitively, the invariants that we associate to two strongly isomorphic networks should be the
same. We define an R-invariant of networks to be a map ι : CN Ñ R such that for any X, Y P CN ,
if X �s Y then ιpXq � ιpY q. Any R-invariant is an example of a pseudometric (and in particular,
a metric) space valued invariant, which we define next. Recall that a pseudometric space pV, dV q is
a metric space where we allow dV pv, v

1q � 0 even if v � v1.

Definition 17. Let pV, dV q be any metric or pseudometric space. A V -valued invariant is any map
ι : CN Ñ V such that ιpX,ωXq � ιpY, ωY q whenever X �s Y .

Recall that PpRq, the nonempty elements of the power set of R, is a pseudometric space when
endowed with the Hausdorff distance [7, Proposition 7.3.3].

In what follows, we will construct several maps and claim that they are pseudometric space
valued invariants; this claim will be substantiated in Proposition 38. We will eventually prove that
our proposed invariants are quantitatively stable. This notion is made precise in §4.1.

Example 33. Define the diameter map to be the map

diam : CN Ñ R given by pX,ωXq ÞÑ max
x,x1PX

|ωXpx, x
1q|.
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FIGURE 6. The trace map erases data between pairs of nodes.

Then diam is an R-invariant. Observe that the maximum is achieved for pX,ωXq P CN because
X (hence X � X) is compact and ωX : X � X Ñ R is continuous. An application of diam to
Example 7 gives an upper bound on dN pX, Y q for X, Y P CN in the following way:

dN pX, Y q ¤ dN pX,N1p0qq � dN pN1p0q, Y q �
1
2
pdiampXq � diampY qq for any X, Y P CN .

Example 34. Define the spectrum map

spec : CN Ñ PpRq by pX,ωXq ÞÑ tωXpx, x
1q : x, x1 P Xu.

The spectrum also has two local variants. Define the out-local spectrum ofX by x ÞÑ specout
X pxq :�

tωXpx, x
1q, x1 P Xu. Notice that specpXq �

�
xPX specout

X pxq for any network X , thus justifying
the claim that this construction localizes spec. Similarly, we define the in-spectrum of X as the map
x ÞÑ specin

Xpxq :� tωXpx
1, xq : x1 P Xu . Notice that one still has specpXq �

�
xPX specin

Xpxq for
any network X . Finally, we observe that the two local versions of spec do not necessarily coincide
in an asymmetric network.

The spectrum is closely related to the multisets used by Boutin and Kemper [5] to produce
invariants of weighted undirected graphs. For an undirected graph G, they considered the collection
of all subgraphs with three nodes, along with the edge weights for each subgraph (compare to our
notion of spectrum). Then they proved that the distribution of edge weights of these subgraphs is an
invariant when G belongs to a certain class of graphs.

Example 35. Define the trace map tr : CN Ñ PpRq by pX,ωXq ÞÑ trpXq :� tωXpx, xq : x P Xu.
This also defines an associated map x ÞÑ trXpxq :� ωXpx, xq. An example is provided in Figure 6:
in this case, we have pX, trXq � ptp, qu, pα, βqq.

Example 36 (The out and in maps). Let pX,ωXq P CN , and let x P X . Now define out : CN Ñ
PpRq and in : CN Ñ PpRq by

outpXq �
!

max
x1PX

|ωXpx, x
1q| : x P X

)
for all pX,ωXq P CN

inpXq �
!

max
x1PX

|ωXpx
1, xq| : x P X

)
for all pX,ωXq P CN .

For each x P X , maxx1PX |ωXpx, x
1q| and maxx1PX |ωXpx

1, xq| are achieved because txu �X and
X � txu are compact. We also define the associated maps outX and inX by writing, for any
pX,ωXq P CN and any x P X ,

outXpxq � max
x1PX

|ωXpx, x
1q| inXpxq � max

x1PX
|ωXpx

1, xq|.

To see how these maps operate on a network, let X � tp, q, ru and consider the weight matrix
Σ �

�
1 2 3
0 0 4
0 0 5

	
. The network corresponding to this matrix is shown in Figure 7. We ascertain the
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FIGURE 7. The out map applied to each node yields the greatest weight of an arrow
leaving the node, and the in map returns the greatest weight entering the node.

following directly from the matrix:

outXppq � 3 inXppq � 1

outXpqq � 4 inXpqq � 2

outXprq � 5 inXprq � 5.

So the out map returns the maximum (absolute) value in each row, and the in map pulls out the
maximum (absolute) value in each column of the weight matrix. As in the preceding example, we
may use the Hausdorff distance to compare the images of networks under the out and in maps.

Constructions similar to out and in have been used by Jon Kleinberg to study the problem of
searching the World Wide Web for user-specified queries [50]. In Kleinberg’s model, for a search
query σ, hubs are pages that point to highly σ-relevant pages (compare to out
), and authorities
are pages that are pointed to by pages that have a high σ-relevance (compare to in
). Good hubs
determine good authorities, and good authorities turn out to be good search results.

Example 37 (min-out and min-in). Define the maps mout : CN Ñ R and min : CN Ñ R by

moutppX,ωXqq � min
xPX

outXpxq for all pX,ωXq P CN

minppX,ωXqq � min
xPX

inXpxq for all pX,ωXq P CN .

Then both min and mout are R-invariants. We take the minimum when defining mout,min because
for any network pX,ωXq, we have maxxPX outXpxq � maxxPX inXpxq � diampXq. Also observe
that the minima are achieved above because X is compact.

Proposition 38. The maps out, in, tr, spec, and spec
 are PpRq-invariants. Similarly, diam,mout,
and min are R-invariants.

We introduce some notation before presenting the next invariant. For a sequence pxiqni�1 of nodes
in a network X , we will denote the associated weight matrix by ppωXpxi, xjqqqni,j�1. Entry pi, jq of
this matrix is simply ωXpxi, xjq.

Definition 18 (Motif sets). For each n P N and each X P CN , define Ψn
X : Xn Ñ Rn�n to be the

map px1, � � � , xnq ÞÑ ppωXpxi, xjqqq
n
i,j�1. Note that Ψn

X is simply a map that sends each sequence of
length n to its corresponding weight matrix. Let CpRn�nq denote the closed subsets of Rn�n. Then
let Mn : CN Ñ CpRn�nq denote the map defined by

pX,ωXq ÞÑ tΨn
Xpx1, . . . , xnq : x1, . . . , xn P Xu .
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We refer to MnpXq as the n-motif set of X . Notice that the image of Mn is closed in Rn�n because
each coordinate is the continuous image of the compact set X �X under ωX , hence the image of
Mn is compact in Rn�n and hence closed.

Notice that for X P FN and for a fixed n P N, the set MnpXq is a finite subset of Rn�n. The
interpretation is that MnpXq is a bag containing all the motifs of X that one can form by looking at
all subnetworks of size n (with repetitions).

Example 39. For the networks from Example 1, we have M1pN2pΩqq � tα, βu and

M2pN2pΩqq �
 
p α α
α α q ,

�
β β
β β

�
,
�
α δ
γ β

�
,
�
β γ
δ α

� (
, M2pN1pαqq � tp α α

α α qu .

Remark 40. Our definition of motif sets is inspired by a definition made by Gromov, termed
“curvature classes,” in the context of compact metric spaces [42, 3.27].

Definition 19 (Motif sets are metric space valued invariants). Our use of motif sets is motivated by
the following observation, which appeared in [61, Section 5]. For any n P N, let CpRn�nq denote
the set of closed subsets of Rn�n. Under the Hausdorff distance induced by the `8 metric on Rn�n,
this set becomes a valid metric space [7, Proposition 7.3.3]. The motif sets defined in Definition 18
define a metric space valued invariant as follows: for each n P N, let Mn : CN Ñ CpRn�nq be the
map X ÞÑ MnpXq. We call this the motif set invariant. So for pX,ωXq, pY, ωY q P CN , for each
n P N, we let pZ, dZq � pRn�n, `8q and consider the following distance between the n-motif sets
of X and Y :

dnpMnpXq,MnpY qq :� dZHpMnpXq,MnpY qq.

Since dH is a proper distance between closed subsets, dnpMnpXq,MnpY qq � 0 if and only if
MnpXq � MnpY q.

4.1. Quantitative stability of invariants of networks. Let pV, dV q be a given pseudometric space.
The V -valued invariant ι : CN Ñ V is said to be quantitatively stable if there exists a constant
L ¡ 0 such that

dV
�
ιpXq, ιpY q

�
¤ L � dN1pX, Y q

for all networks X and Y . The least constant L such that the above holds for all X, Y P CN is the
Lipschitz constant of ι and is denoted Lpιq.

Note that by identifying a non-constant quantitatively stable V -valued invariant ι, we immediately
obtain a lower bound for the dN distance between any two compact networks pX,ωXq and pY, ωY q.
Furthermore, given a finite family ια : CN Ñ V , α P A, of non-constant quantitatively stable
invariants, we may obtain the following lower bound for the distance between compact networks X
and Y :

dN pX, Y q ¥
�

max
αPA

Lpιαq
��1

max
αPA

dV pιαpXq, ιαpY qq.

It is often the case that computing dV pιpXq, ιpY qq is substantially simpler than computing the dN
distance between X and Y (which leads to a possibly NP-hard problem). The invariants described
in the previous section are quantitatively stable.

Proposition 41. The invariants diam, tr, out, in,mout, and min are quantitatively stable, with
Lipschitz constant L � 2.

Example 42. Proposition 41 provides simple lower bounds for the dN distance between compact
networks. One application is the following: for all networks X and Y , we have dN pX, Y q ¥
1
2

�� diampXq � diampY q
��. For example, for the networks X � N2pp 1 5

2 4 qq and Y � Nkp1k�kq (the
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FIGURE 8. Lower-bounding dN by using global spectra (cf. Example 44).

all-ones matrix—also see Example 1 to recall the N2 and Nk notation) we have dN pX, Y q ¥
1
2
|5� 1| � 2, for all k P N. For another example, consider the weight matrices

Σ :�
�

0 5 2
3 1 4
1 4 3

	
and Σ1 :�

�
3 4 2
3 1 5
3 3 4

	
.

Let X � N3pΣq and Y � N3pΣ
1q. By comparing the diagonals, we can easily see that X �s Y ,

but let’s see how the invariants we proposed can help. Note that diampXq � diampY q � 5, so
the lower bound provided by diameter (1

2
|5 � 5| � 0) does not help in telling the networks apart.

However, trpXq � t0, 1, 3u and trpY q � t3, 1, 4u, and Proposition 41 then yields

dN pX, Y q ¥
1

2
dRHpt0, 1, 3u, t1, 3, 4uq �

1

2
.

Consider now the out and in maps. Note that one has outpXq � t5, 4u, outpY q � t4, 5u,
inpXq � t3, 5, 4u, and inpY q � t3, 4, 5u. Then dRHpoutpXq, outpY qq � 0, and dRHpinpXq, inpY qq �
0. Thus in both cases, we obtain dN pX, Y q ¥ 0. So in this particular example, the out and in maps
are not useful for obtaining a lower bound to dN pX, Y q via Proposition 41.

Now we state a proposition regarding the stability of global and local spectrum invariants. These
will be of particular interest for computational purposes as we explain in §5.

Proposition 43. Let spec
 refer to either the out or in version of local spectrum. Then, for all
pX,ωXq, pY, ωY q P CN we have

dN pX, Y q ¥
1

2
inf
RPR

sup
px,yqPR

dRHpspec
Xpxq, spec
Y pyqq

¥
1

2
dRHpspecpXq, specpY qq.

As a corollary, we get Lpspec
q � Lpspecq � 2.

Example 44 (An application of Proposition 43). Consider the networks in Figure 8. By Propo-
sition 43, we may calculate a lower bound for dN pX, Y q by simply computing the Hausdorff
distance between specpXq and specpY q, and dividing by 2. In this example, specpXq � t1, 2u and
specpY q � t1, 2, 3u. Thus dRHpspecpXq, specpY qq � 1, and dN pX, Y q ¥ 1

2
.

Computing the lower bound involving local spectra requires solving a bottleneck linear assignment
problem over the set of all correspondences between X and Y . This can be solved in polynomial
time; details are provided in §5. The second lower bound stipulates computing the Hausdorff
distance on R between the (global) spectra of X and Y – a computation which can be carried out in
(smaller) polynomial time as well.

To conclude this section, we state a theorem asserting that motif sets form a family of quantita-
tively stable invariants.
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Theorem 45. For each n P N, Mn is a stable invariant with LpMnq � 2.

Remark 46. While motif sets are of interest as a quantitatively stable network invariant, they also
feature in an interesting reconstruction result on metric spaces. In [42, Section 3.271

2
], Gromov

proved that two compact metric spaces are isometric if and only if their motif sets are equal. It turns
out that this reconstruction theorem can be strengthened to hold even in the setting of networks, and
the proof utilizes Theorem 45. We will release this result in a future publication.

5. COMPUTATIONAL ASPECTS

In this section we first discuss some algorithmic details on how to compute the lower bounds
for dN involving local spectra and then present some computational examples. All networks
in this section are assumed to be finite. Our software and datasets are available on https:
//github.com/fmemoli/PersNet as part of the PersNet software package.

5.1. The complexity of computing dN . By Remark 15 and Proposition 17 we know that in the
setting of finite networks, it is possible to obtain an upper bound on dN , in the case cardpXq �

cardpY q, by using pdN . Solving for pdN pX, Y q reduces to minimizing the function maxx,x1PX fpϕq
over all bijections ϕ from X to Y . Here fpϕq :� maxx,x1 |ωXpx, x

1q � ωY pϕpxq, ϕpx
1qq|. However,

this is an instance of an NP-hard problem known as the quadratic bottleneck assignment problem
[72]. The structure of the optimization problem induced by dN is very similar to that of pdN , so
it seems plausible that computing dN would be NP-hard as well. This intuition is confirmed in
Theorem 47. We remark that similar results were obtained for the Gromov-Hausdorff distance by F.
Schmiedl in his PhD thesis [82].

Theorem 47. Computing dN is NP-hard.

Proof. To obtain a contradiction, assume that dN is not NP-hard. Let X, Y P FN dis such that
cardpXq � cardpY q. We write RpX, Y q � RB \ RN , where RB consists of correspondences
for which the projections πX , πY are injective, thus inducing a bijection between X and Y , and
RN � RpX, Y qzRB. Note that for any R P RN , there exist x, x1, y such that px, yq, px1, yq P R, or
there exist x, y, y1 such that px, yq, px, y1q P R. Define Ψ : RÑ R by:

Ψpζq �

#
ζ � C : ζ � 0

0 : ζ � 0
, where

C � max
RPRpX,Y q

dispRq � 1.

For convenience, we will write ΨpXq,ΨpY q to mean pX,Ψ � ωXq and pY,Ψ � ωY q respectively.
We will also write:

disΨpRq :� max
px,yq,px1,y1qPR

|ΨpωXpx, x
1qq �ΨpωY py, y

1qq|.

Consider the problem of computing dN pΨpXq,ΨpY qq. First observe that for any R P RB , we have
dispRq � disΨpRq. To see this, let R P RB. Let px, yq, px1, y1q P R, and note that x � x1, y � y1.
Then:

|ΨpωXpx, x
1qq �ΨpωY py, y

1qq| � |ωXpx, x
1q � C � ωY py, y

1q � C| � |ωXpx, x
1q � ωY py, y

1q|.

Since px, yq, px1, y1q were arbitrary, it follows that dispRq � disΨpRq. This holds for all R P RB.

https://github.com/fmemoli/PersNet
https://github.com/fmemoli/PersNet
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On the other hand, let R P RN . By a previous observation, we assume that there exist x, x1, y
such that px, yq, px1, yq P R. For such a pair, we have:

|ΨpωXpx, x
1qq �ΨpωY py, yqq| � |ωXpx, x

1q � C � 0| ¥ max
SPRpX,Y q

dispSq � 1.

It follows that disΨpRq ¡ disΨpSq, for any S P RB. Hence:

dN pΨpXq,ΨpY qq �
1

2
min

RPRpX,Y q
disΨpRq

�
1

2
min
RPRB

disΨpRq

�
1

2
min
RPRB

dispRq

�
1

2
min
ϕ

dispϕq, where ϕ ranges over bijections X Ñ Y

� pdN pX, Y q.
It is known (see Remark 48 below) that computing pdN is NP-hard. But the preceding calculation

shows that pdN can be computed through dN , which, by assumption, is not NP-hard. This is a
contradiction. Hence dN is NP-hard. �

Remark 48. We can be more precise about why computing pdN is a case of the QBAP. Let X �
tx1, . . . , xnu and let Y � ty1, . . . , ynu. Let Π denote the set of all n�n permutation matrices. Note
that any π P Π can be written as π � ppπijqq

n
i,j�1, where each πij P t0, 1u. Then

°
j πij � 1 for any

i, and
°
i πij � 1 for any j. Computing pdN now becomes:

pdN pX, Y q � 1

2
min
πPΠ

max
1¤i,k,j,l,¤n

Γijklπijπkl, where Γikjl � |ωXpxi, xkq � ωY pyj, ylq|.

This is just the QBAP, which is known to be NP-hard [8].

5.2. Lower bounds and an algorithm for computing minimum matchings. Lower bounds for
dN involving the comparison of local spectra of two networks such as those in Proposition 43 require
computing the minimum of a functional JpRq :� maxpx,yqPR Cpx, yq where C : X � Y Ñ R� is a
given cost function and R ranges in RpX, Y q. This is an instance of a bottleneck linear assignment
problem (or LBAP) [8]. We remark that the current instance differs from the standard formulation
in that one is now optimizing over correspondences and not over permutations. Hence the standard
algorithms need to be modified.

Assume n � cardpXq and m � cardpY q. In this section we adopt matrix notation and regard R
as a matrix ppri,jqq P t0, 1un�m. The condition R P RpX, Y q then requires that

°
i ri,j ¥ 1 for all j

and
°
j ri,j ¥ 1 for all i. We denote by C � ppci,jqq P Rn�m

� the matrix representation of the cost
function C described above. With the goal of identifying a suitable algorithm, the key observation
is that the optimal value minRPR JpRq must coincide with a value realized in the matrix C.

An algorithm with complexity Opn2 � m2q is the one in Algorithm 1 (we give it in Matlab
pseudo-code). The algorithm belongs to the family of thresholding algorithms for solving matching
problems over permutations, see [8]. Notice that R is a binary matrix and that procedure Test-
Correspondence has complexity Opn �mq. In the worst case, the matrix C has n �m distinct
entries, and the while loop will need to exhaustively test them all, hence the claimed complexity of
Opn2 �m2q. Even though a more efficient version (with complexity Oppn�mq logpn�mqq can
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be obtained by using a bisection strategy on the range of possible values contained in the matrix C
(in a manner similar to what is described for the case of permutations in [8]), here for clarity we
limit our presentation to the version detailed above.

Algorithm 1 MinMax matching
1: procedure MINMAXMATCH(C)
2: v � sortpuniquepCp:qqq;
3: k � 1;
4: while �done do
5: c � vpkq;
6: R � pC  � cq;
7: done � TESTCORRESPONDENCEpRq;
8: k � k � 1;

9: return c
10: procedure TESTCORRESPONDENCE(R)
11: done = prod(sum(R))*prod(sum(R’)) ¡ 0;
12: return done

5.3. Computational example: randomly generated networks. As a first application of our ideas
we generated a database of weighted directed networks with different numbers of “communities”
and different total cardinalities using the software provided by [32]. Using this software, we
generated 35 random networks as follows: 5 networks with 5 communities and 200 nodes each
(class c5-n200), 5 networks with 5 communities and 100 nodes each (class c5-n100), 5 networks
with 4 communities and 128 nodes each (class c4-n128), 5 networks with 2 communities and
20 nodes each (class c2-n20), 5 networks with 1 community and 50 nodes each (class c1-n50),
and 10 networks with 1 community and 128 nodes each (class c1-n128). In order to make the
comparison more realistic, as a preprocessing step we divided all the weights in each network by the
diameter of the network. In this manner, discriminating between networks requires differentiating
their structure and not just the scale of the weights. Note that the (random) weights produced by the
software [32] are all non-negative.

Using a Matlab implementation of Algorithm 1 we computed a 35 � 35 matrix of values
corresponding to a lower bound based simultaneously on both the in and out local spectra. This
strengthening of Proposition 43 is stated below.

Proposition 49. For all X, Y P FN ,

dN pX, Y q ¥
1
2

min
RPR

max
px,yqPR

Cpx, yq, where

Cpx, yq � max
�
dRHpspecin

Xpxq, specin
Y pyqq, d

R
Hpspecout

X pxq, specout
Y pyqq

�
.

This bound follows from Proposition 43 by the discussion at the beginning of §4.1.
The results are shown in the form of the lower bound matrix and its single linkage dendrogram

in Figures 9 and 10, respectively. Notice that the labels in the dendrogram permit ascertaining the
quality of the classification provided by the local spectra bound. With only very few exceptions,
networks with similar structure (same number of communities) were clustered together regardless of
their cardinality. Notice furthermore how networks with 4 and 5 communities merge together before
merging with networks with 1 and 2 communities, and vice versa. For comparison, we provide
details about the performance of the global spectra lower bound on the same database in Figures 10
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FIGURE 9. Lower bound matrix arising from matching local spectra on the database
of community networks. The labels indicate the number of communities and the
total number of nodes. Results correspond to using local spectra as described in
Proposition 49.

and 12. The results are clearly inferior to those produced by the local version, as predicted by the
inequality in Proposition 43.

5.4. Computational example: simulated hippocampal networks. A natural observation about
humans is that as they navigate an environment, they produce “mental maps” which enable them
to recall the features of the environment at a later time. This is also true for other animals with
higher cognitive function. In the neuroscience literature, it is accepted that the hippocampus in an
animal’s brain is responsible for producing a mental map of its physical environment [3, 6]. More
specifically, it has been shown that as a rat explores a given environment, specific physical regions
(“place fields”) become linked to specific “place cells” in the hippocampus [70, 71]. Each place
cell shows a spike in neuronal activity when the rat enters its place field, accompanied by a drop in
activity as the rat goes elsewhere. In order to understand how the brain processes this data, a natural
question to ask is the following: Is the time series data of the place cell activity, often referred to as
“spike trains”, enough to recover the structure of the environment?

Approaches based on homology [22] and persistent homology [23] have shown that the preceding
question admits a positive answer. We were interested in determining if, instead of computing
homology groups, we could represent the time series data as networks, and then apply our invariants
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FIGURE 10. Single linkage dendrogram corresponding to the database of community
networks. The labels indicate the number of communities and the total number of
nodes. Results correspond to using local spectra as described in Proposition 49.

to distinguish between different environments. Our preliminary results on simulated hippocampal
data indicate that such may be the case.

In our experiment, there were two environments: (1) a square of side length L, and (2) a square
of side length L, with a disk of radius 0.33L removed from the center. In what follows, we refer to
the environments of the second type as 1-hole environments, and those of the first type as 0-hole
environments. For each environment, a random-walk trajectory of 5000 steps was generated, where
the agent could move above, below, left, or right with equal probability. If one or more of these
moves took the agent outside the environment (a disallowed move), then the probabilities were
redistributed uniformly among the allowed moves. The length of each step in the trajectory was
0.1L.

In the first set of 20 trials for each environment, 200 place fields of radius 0.1L were scattered
uniformly at random. In the next two sets, the place field radii were changed to 0.2L and 0.05L.
This produced a total of 60 trials for each environment. For each trial, the corresponding network
pX,ωXq was constructed as follows: X consisted of 200 place cells, and for each 1 ¤ i, j ¤ 200,
the weight ωXpxi, xjq was given by:

ωXpxi, xjq � 1�
# times cell xj spiked in a window of five time units after cell xi spiked

# times cell xj spiked
.

The results of applying the local spectra lower bound are shown in Figures 14, 15 and 16. The
labels env-0, env-1 correspond to 0 and 1-hole environments, respectively. Note that with
some exceptions, networks corresponding to the same environment are clustered together, regardless
of place field radius. Finally, in Figure 13 we present the single linkage dendrogram obtained from
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FIGURE 11. Lower bound matrix arising from matching global spectra on the
database of community networks. The labels indicate the number of communities
and the total number of nodes.

comparing all 120 networks together. In light of these results, we are interested in seeing how these
methods can applied to other time series data arising from biology.

As a final remark, we note that it is possible to obtain better clustering on the hippocampal
network dataset by using dN -invariants that arise from persistent homology. We refer the reader to
[17] for details.

6. COMPARISON OF dN WITH THE CUT METRIC ON GRAPHS

In our work throughout this paper, we have developed the theoretical framework of a certain
notion of network distance that has proven to be useful for applying methods from the topological
data analysis literature to network data. In each of these applications, networks were modeled as
generalizations of metric spaces, and so the appropriate notion of network distance turned out to
be a generalization of the Gromov-Hausdorff distance between compact metric spaces. However,
an alternative viewpoint would be to model networks as weighted, directed graphs. From this
perspective, a well-known metric on the space of all graphs is the cut metric [57, 4]. In particular, it
is known that the completion of the space of all graphs with respect to the cut metric is compact
[57, p. 149]. An analogous result is known for the network distance, and we will establish it
in a forthcoming publication. It turns out that there are other structural similarities between the
cut metric and the network distance. In this section, we will develop an interpretation of an `8
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FIGURE 12. Single linkage dendrogram corresponding to the database of community
networks. The labels indicate the number of communities and the total number of
nodes. Results correspond to using global spectra as signatures.

version of the cut metric in the setting of compact metric spaces, and show that it agrees with the
Gromov-Hausdorff distance in this setting.

6.1. The cut distance between finite graphs. Let G � pV,Eq denote a vertex-weighted and
edge-weighted graph on a vertex set V � t1, 2, . . . , nu. Let αi denote the weight of node i, with
the assumption that each αi ¥ 0, and

°
i αi � 1. Let βij P R denote the weight of edge ij. For any

S, T � V , define:
eGpS, T q :�

¸
sPS,tPT

αsαtβst.

Note for future reference that one may regard eG as a function from PpV q � PpV q into R, where
PpSq denotes the nonempty elements of the power set of a set S.

Let A be an n � n matrix of real numbers. Some classical norms include the `1 norm }A}1 �
n�2

°n
i,j�1 |Aij|, the `2 norm }A}2 � pn�2

°n
i,j�1 |Aij|

2q1{2, and the `8 norm }A}8 � maxi,j |Aij|.
Note that the n�2 term is included for normalization.

The cut norm of A is defined as

}A}2 :�
1

n2
max

S,T�t1,...,nu

��� ¸
iPS,jPT

Aij

���.
The cut metric or cut distance is defined between weighted graphs on the same node set V �

t1, 2, . . . , nu as
δ2pG,G

1q :� max
S,T�V

|eGpS, T q � eG1pS, T q|.
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FIGURE 13. Single linkage dendrogram corresponding to 120 hippocampal net-
works of place field radii 0.05L, 0.1L, and 0.2L. Results are based on the local
spectrum lower bound of Proposition 49.
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Next we consider weighted graphs with different numbers of nodes. Let G,G1 be graphs on n and
m nodes respectively, with node weights pαiqni�1, pα

1
kq
m
k�1 and edge weights pβijqni,j�1, pβ

1
klq

m
k,l�1,

respectively. A fractional overlay is a non-negative n�m matrix W such that

ņ

i�1

Wik � α1k for 1 ¤ k ¤ m, and
m̧

k�1

Wik � αi for 1 ¤ i ¤ n.

Define WpG,G1q to be the set of all fractional overlays between G and G1. Let W PWpG,G1q.
Consider the graphs GpW q, G1pW q on the node set tpi, kq : i ¤ n, k ¤ m, i, k P Nu defined in the
following way: node pi, kq carries weight Wik in both GpW q, G1pW q, edge ppi, kq, pj, lqq carries
weight βij in GpW q and β1kl in G1pW q. Then the cut distance becomes

d2pG,G
1q :� min

WPWpG,G1q
δ2pGpXq, G

1pXqq. (�)

6.2. The cut distance and the Gromov-Hausdorff distance. In our interpretation, a fractional
overlay is analogous to a correspondence, as defined in §2. We define correspondences between
networks, but a similar definition can be made for metric spaces, and in the case of finite metric
spaces, a correspondence can be regarded as a binary matrix. Since correspondences are used
to define the Gromov-Hausdorff distance between compact metric spaces, and our definition of
network distance is motivated by GH distance, we would like to reinterpret the cut distance in the
setting of compact metric spaces. Our goal is to show that in this setting, a certain analogue of the
cut distance agrees with the GH distance.

For any compact metric space pX, dXq, let PpXq denote the nonempty elements of the power
set of X , and let eX be any R�-valued function defined on PpXq � PpXq. In analogy with the
definition of eG for graphs, one would like eX to absorb information about the metric dX on X .

Given a subset R � X � Y , let π1 and π2 denote the canonical projections to the X and Y
coordinates, respectively. Let Ξ denote the map that takes a compact metric space pX, dXq and
returns a function eX : PpXq � PpXq Ñ R. We impose the following two conditions on the
assignment dX ÞÑ eX induced by the map Ξ:

(1) For all x, x1 P X ,
ΞpdXqptxu , tx

1uq � dXpx, x
1q. (#1)

Thus eX � ΞpdXq and dX agree on singleton sets.
(2) For all T, S � X � Y ,

|ΞpdXqpπ1pT q, π1pSqq � ΞpdY qpπ2pT q, π2pSqq| ¤ max
tPT,sPS

|dXpπ1ptq, π1psqq � dY pπ2ptq, π2psqq|.

(#2)
The latter of the two conditions above can be viewed as a continuity condition.

Example 50. Some natural candidates for the assignment dX ÞÑ eX which satisfy the two conditions
above are:


 ΞH such that eXpA,Bq � dXH pA,Bq, the Hausdorff distance,


 Ξmax such that eXpA,Bq � supaPA,bPB dXpa, bq,


 Ξmin such that eXpA,Bq � infaPA,bPB dXpa, bq.

It is clear that all these satisfy p#1q. In Proposition 52 we prove that they satisfy condition p#2q.
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An analogue of the cut distance (�) in the setting of compact metric spaces is the following.

Definition 20 (An analogue of the cut distance for compact metric spaces). Let Ξ be any map
satisfying (#1) and (#2). Then for compact metric spaces X and Y , define

dΞ
2pX, Y q :�

1

2
inf
R

sup
S,T�R

|ΞpdXqpπ1pT q, π1pSqq � ΞpdY qpπ2pT q, π2pSqq|,

where R ranges over correspondences between X and Y , and π1, π2 are the canonical projections
from X � Y onto X and Y respectively. We include the coefficient 2�1 to make comparison with
dGH simpler. We claim that this interpretation of dΞ

2 is identical to dGH.

Note that one definition of the Gromov-Hausdorff distance for compact metric spaces [7, Theorem
7.3.25] is the following:

dGHpX, Y q �
1

2
inf
RPR

sup
px,yq,px1,y1qPR

|dXpx, x
1q � dY py, y

1q|.

We also make the following definitions for distortion:

disGHpRq � sup
px,yq,px1,y1qPR

|dXpx, x
1q � dY py, y

1q|,

disΞ
2pRq � sup

S,T�R
|ΞpdXqpπ1T, π1Sq � ΞpdY qpπ2T, π2Sq|.

Proposition 51. For all compact metric spaces X, Y and any assignment Ξ satisfying (#1) and
(#2) above, one has dGHpX, Y q � dΞ

2pX, Y q.

Proof of Proposition 51. Write eX � ΞpdXq and eY � ΞpdY q. Let R P RpX, Y q. In computing
disΞ

GHpRq, we take the supremum over all subsets of R, including singletons. Since eX (resp. eY )
agrees with dX (resp. dY ) on singletons, it follows that disGHpRq ¤ disΞ

2pRq. Thus dGH ¤ dΞ
2.

We now need to show dΞ
2 ¤ dGH.

Let η ¡ 0 such that dGHpX, Y q   η. Then, by one of the characterizations of dGH [7, Chapter 7],
there exists a joint-metric δ defined on X \ Y and a correspondence R such that δpx, yq   η for all
px, yq P R. In particular, δ agrees with dX and dY when restricted to the appropriate spaces. Now
we have

disΞ
2pRq � sup

T,S�R
|eXpπ1pT q, π1pSqq � eY pπ2pT q, π2pSqq|

¤ sup
T,S�R

sup
tPT,sPS

|dXpπ1ptq, π1psqq � dY pπ2ptq, π2psqq|

� sup
T,S�R

sup
tPT,sPS

|δpπ1ptq, π1psqq � δpπ2ptq, π2psqq|

By the triangle inequality, we have the following for any t P T and s P S:

|δpπ1ptq, π1psqq � δpπ2ptq, π2psqq| ¤ |δpπ1ptq, π1psqq � δpπ1psq, π2ptqq|

� |δpπ1psq, π2ptqq � δpπ2ptq, π2psqq|

¤ |δpπ1ptq, π2ptqq| � |δpπ1psq, π2psqq|

  η � η � 2η. Thus we conclude

disΞ
2pRq ¤ 2η.

This shows dΞ
2pX, Y q ¤ η, and so dΞ

2pX, Y q ¤ dGHpX, Y q. So we conclude dGHpX, Y q �
dΞ
2pX, Y q, under the assumptions made in this discussion. �
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Proposition 52. Each of the maps Ξmin, Ξmax, and ΞH satisfies condition (#2).

Proof. We only give details for ΞH. The argument for the other cases is similar. Let X, Y be
compact metric spaces, and let T, S � X � Y . First we recall the Hausdorff distance between two
closed subsets E,F � X:

dXH pE,F q � max

"
sup
ePE

inf
fPF

dXpe, fq, sup
fPF

inf
ePE

dXpe, fq

*
.

So dXH between two sets in X is written as a max of two numbers a and b, and we have the general
result

|maxpa, bq �maxpa1, b1q| ¤ maxp|a� a1|, |b� b1|q.

Another general result about “calculating” with sup is that | sup f � sup g| ¤ sup |f � g| for real
valued functions f and g. Both these properties are consequences of the triangle inequality, and we
use them here:

|dXH pπ1pT q, π1pSqq � dYHpπ2pT q, π2pSqq| � |maxpa, bq �maxpa1, b1q|

¤ maxp|a� a1|, |b� b1|q, where

a � sup
tPT

inf
sPS

dXpπ1ptq, π1psqq

a1 � sup
tPT

inf
sPS

dY pπ2ptq, π2psqq

b � sup
sPS

inf
tPT

dXpπ1ptq, π1psqq

b1 � sup
sPS

inf
tPT

dY pπ2ptq, π2psqq

We consider only one of the terms |a� a1|; the other term can be treated similarly.

|a� a1| � | sup
tPT

inf
sPS

dXpπ1ptq, π1psqq � sup
tPT

inf
sPS

dY pπ2ptq, π2psqq|

¤ sup
tPT

| inf
sPS

dXpπ1ptq, π1psqq � inf
sPS

dY pπ2ptq, π2psqq|

¤ sup
tPT,sPS

|dXpπ1ptq, π1psqq � dY pπ2ptq, π2psqq|.

The same bound holds for |b� b1|. Thus dH satisfies condition (#2), as claimed. �

7. DISCUSSION

We introduced a model for the space of all networks, and defined two notions of weak iso-
morphism (Types I and II) between any two networks. We saw immediately that the two types
coincide for finite networks, and observed that it is non-trivial to verify that they coincide for
compact networks. We proposed a notion of distance compatible with Type II weak isomorphism
and verified that our definition actually does induce a (pseudo)metric. In the latter part of the paper,
we proved sampling theorems by which one may approximate compact networks, and verified that
weak isomorphism of Types I and II coincide for compact networks. To motivate the sampling
theorem, we first constructed an explicit example of a compact, asymmetric network—the directed
circle—and also provided an explicit family of finite dissimilarity networks that approximate the
directed circle up to arbitrary precision.

We constructed multiple quantitatively stable invariants, with examples illustrating their behavior,
and quantified their stability. We also returned to the question of computing dN pX, Y q explicitly,
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and proved that one way is to compute the related quantity pdN . Later in the paper, we observed that
this is an instance of the quadratic bottleneck assignment problem, which is NP-hard, and proved
that computing dN is NP-hard as well.

We also compared dN with an `8 version of the cut metric on graphs. The cut metric is a notion
of distance between graphs which has been used for studying the convergence of sequences of
graphs to continuous objects. We carried out this comparison in the context of compact metric
spaces where dN boils down to the Gromov-Hausdorff distance and proved that the `8 version of
the cut metric agrees with dN for a large family of parameters.

Finally, we provided an algorithm of complexity Opn2 �m2q that uses local spectra to compute
a lower bound for dN , and illustrated our constructions on: (1) a database of random networks
with different numbers of nodes and varying community structures, and (2) simulated hippocampal
networks with the same number of nodes, where the weights on the networks are assumed to capture
a certain notion of shape in the data. We also provided Matlab code and datasets for applying
our methods as part of the PersNet software package (https://github.com/fmemoli/
PersNet).
Further results. This paper is the first in a series of two papers (the other being [18]) laying out the
theoretical foundations of the network distance dN . We briefly advertise some of the other results
regarding dN that we have released in [18]. It turns out that the space of weak isomorphism classes
of compact networks is complete, i.e. any Cauchy sequence of compact networks converges to
a compact network. The space N admits rich classes of precompact families, which gives us an
idea about its topological complexity. Moreover, this space is geodesic, and geodesics between
two points need not be of a unique form. The motif sets that we established as invariants return
to feature in a very interesting reconstruction theorem: two compact networks (satisfying some
additional assumptions) are weakly isomorphic if and only if they have the same n-motif sets, for
all n P N. Finally, we close the arc that began with strong isomorphism in the following theorem:
two compact networks (satisfying some additional assumptions) are weakly isomorphic if and only
if they contain some essential substructures that are strongly isomorphic.
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APPENDIX A. PROOFS

Proof of Proposition 10. The case for Type I weak isomorphism is similar to that of Type II, so we
omit it. For Type II weak isomorphism, the reflexive and symmetric properties are easy to see, so we
only provide details for verifying transitivity. Let A,B,C P N be such that A �w

II B and B �w
II C.

Let ε ¡ 0, and let P, S be sets with surjective maps ϕA : P Ñ A, ϕB : P Ñ B, ψB : S Ñ B,
ψC : S Ñ C such that:

|ωApϕAppq, ϕApp
1qq � ωBpϕBppq, ϕBpp

1qq|   ε{2 for each p, p1 P P, and

|ωBpψBpsq, ψBps
1qq � ωCpψCpsq, ψCps

1qq|   ε{2 for each s, s1 P S.

Next define T :� tpp, sq P P � S : ϕBppq � ψBpsqu.

Claim 5. The projection maps πP : T Ñ P and πS : T Ñ S are surjective.

Proof. Let p P P . Then ϕBppq P B, and since ψB : S Ñ B is surjective, there exists s P S such
that ψBpsq � ϕBppq. Thus pp, sq P T , and πP pp, sq � p. This suffices to show that πP : T Ñ P is
a surjection. The case for πS : T Ñ S is similar. �

It follows from the preceding claim that ϕA � πP : T Ñ A and ψC � πS : T Ñ C are surjective.
Next let pp, sq, pp1, s1q P T . Then,

|ωApϕApπP pp, sqq, ϕApπP pp
1, s1qqq � ωCpψCpπSpp, sqq, ψCpπSpp

1, s1qqq|

� |ωApϕAppq, ϕApp
1qq � ωCpψCpsq, ψCps

1qq|

� |ωApϕAppq, ϕApp
1qq � ωBpϕBppq, ϕBpp

1qq � ωBpϕBppq, ϕBpp
1qq � ωCpψCpsq, ψCps

1qq|

� |ωApϕAppq, ϕApp
1qq � ωBpϕBppq, ϕBpp

1qq � ωBpψBpsq, ψBps
1qq � ωCpψCpsq, ψCps

1qq|

  ε{2� ε{2 � ε.

Since ε ¡ 0 was arbitrary, it follows that A �w
II C. �

Proof of Theorem 12. It is clear that dN pX, Y q ¥ 0. To show dN pX,Xq � 0, consider the cor-
respondence R � tpx, xq : x P Xu. Then for any px, xq, px1, x1q P R, we have |ωXpx, x

1q �
ωXpx, x

1q| � 0. Thus dispRq � 0 and dN pX,Xq � 0.
Next we show symmetry, i.e. dN pX, Y q ¤ dN pY,Xq and dN pY,Xq ¤ dN pX, Y q. The two cases

are similar, so we just show the second inequality. Let η ¡ dN pX, Y q. Let R P RpX, Y q be such
that dispRq   2η. Then define R̃ � tpy, xq : px, yq P Ru. Note that R̃ P RpY,Xq. We have:

dispR̃q � sup
py,xq,py1,x1qPR̃

|ωY py, y
1q � ωXpx, x

1q|

� sup
px,yq,px1,y1qPR

|ωY py, y
1q � ωXpx, x

1q|

� sup
px,yq,px1,y1qPR

|ωXpx, x
1q � ωY py, y

1q| � dispRq.

So dispRq � dispR̃q. Then dN pY,Xq �
1
2

infSPRpY,Xq dispSq ¤ 1
2

dispR̃q   η. This shows
dN pY,Xq ¤ dN pX, Y q. The reverse inequality follows by a similar argument.

Next we prove the triangle inequality. Let R P RpX, Y q, S P RpY, Zq, and let

R � S � tpx, zq P X � Z | Dy, px, yq P R, py, zq P Su

First we claim that R � S P RpX,Zq. This is equivalent to checking that for each x P X , there
exists z such that px, zq P R � S, and for each z P Z, there exists x such that px, zq P R � S. The
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proofs of these two conditions are similar, so we just prove the former. Let x P X . Let y P Y be
such that px, yq P R. Then there exists z P Z such that py, zq P S. Then px, zq P R � S.

Next we claim that dispR �Sq ¤ dispRq � dispSq. Let px, zq, px1, z1q P R �S. Let y P Y be such
that px, yq P R and py, zq P S. Let y1 P Y be such that px1, y1q P R, py1, z1q P S. Then we have:

|ωXpx, x
1q � ωZpz, z

1q| � |ωXpx, x
1q � ωY py, y

1q � ωY py, y
1q � ωZpz, z

1q|

¤ |ωXpx, x
1q � ωY py, y

1q| � |ωY py, y
1q � ωZpz, z

1q|

¤ dispRq � dispSq.

This holds for any px, zq, px1, z1q P R � S, and proves the claim.
Now let η1 ¡ dN pX, Y q, let η2 ¡ dN pY, Z, and let R P RpX, Y q, S P RpY, Zq be such that

dispRq   2η1 and dispSq   2η2. Then we have:

dN pX,Zq ¤
1
2

dispR � Sq ¤ 1
2

dispRq � 1
2

dispSq   2η1 � 2η2.

This shows that dN pX,Zq ¤ dN pX, Y q � dN pY, Zq, and proves the triangle inequality.
Finally, we claim that X �w

II Y if and only if dN pX, Y q � 0. Suppose dN pX, Y q � 0. Let ε ¡ 0,
and let Rpεq P RpX, Y q be such that dispRpεqq   ε. Then for any z � px, yq, z1 � px1, y1q P Rpεq,
we have |ωXpx, x1q � ωY py, y

1q|   ε. But this is equivalent to writing |ωXpπXpzq, πXpz
1qq �

ωY pπY pzq, πY pz
1qq|   ε, where πX : Rpεq Ñ X and πY : Rpεq Ñ Y are the canonical projection

maps. This holds for each ε ¡ 0. Thus X �w
II Y .

Conversely, suppose X �w
II Y , and for each ε ¡ 0 let Zpεq be a set with surjective maps

φεX : Zpεq Ñ X , φεY : Z Ñ Y such that |ωXpφXpzq, φXpz1qq � ωY pφY pzq, φY pz
1qq|   ε for all

z, z1 P Zpεq. For each ε ¡ 0, let Rpεq � tpφεXpzq, φ
ε
Y pzqq : z P Zpεqu. Then Rpεq P RpX, Y q for

each ε ¡ 0, and dispRpεqq � supz,z1PZ |ωXpφXpzq, φXpz
1qq � ωY pφY pzq, φY pz

1qq|   ε.
We conclude that dN pX, Y q � 0. Thus dN is a metric modulo Type II weak isomorphism. �

Proof of Example 14. We start with some notation: for x, x1 P X , y, y1 P Y , let

Γpx, x1, y, y1q � |ωXpx, x
1q � ωY py, y

1q|.

Let ϕ : X Ñ Y be a bijection. Note that Rϕ :� tpx, ϕpxqq : x P Xu is a correspondence, and
this holds for any bijection (actually any surjection) ϕ. Since we minimize over all correspondences
for dN , we conclude dN pX, Y q ¤ pdN pX, Y q.

For the reverse inequality, we represent all the elements of RpX, Y q as 2-by-2 binary matrices R,
where a 1 in position ij means pxi, yjq P R. Denote the matrix representation of each R P RpX, Y q
by matpRq, and the collection of such matrices as matpRq. Then we have:

matpRq � tp 1 a
b 1 q : a, b P t0, 1uu Y tp a 1

1 b q : a, b P t0, 1uu

Let A � tpx1, y1q, px2, y2qu (in matrix notation, this is p 1 0
0 1 q) and let B � tpx1, y2q, px2, y1qu (in

matrix notation, this is p 0 1
1 0 q). Let R P RpX, Y q. Note that either A � R or B � R. Suppose that

A � R. Then we have:

max
px,yq,px1,y1qPA

Γpx, x1, y, y1q ¤ max
px,yq,px1,y1qPR

Γpx, x1, y, y1q

Let ΩpAq denote the quantity on the left hand side. A similar result holds in the case B � R:

max
px,yq,px1,y1qPB

Γpx, x1, y, y1q ¤ max
px,yq,px1,y1qPR

Γpx, x1, y, y1q

Let ΩpBq denote the quantity on the left hand side. Since either A � R or B � R, we have

min tΩpAq,ΩpBqu ¤ min
RPR

max
px,yq,px1,y1qPR

Γpx, x1, y, y1q
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We may identify A with the bijection given by x1 ÞÑ y1 and x2 ÞÑ y2. Similarly we may identify B
with the bijection sending x1 ÞÑ y2, x2 ÞÑ y1. Thus we have

min
ϕ

max
x,x1PX

Γpx, x1, ϕpxq, ϕpx1qq ¤ min
RPR

max
px,yq,px1,y1qPR

Γpx, x1, y, y1q.

So we have pdN pX, Y q ¤ dN pX, Y q. Thus pdN � dN .
Next, let tp, qu and tp1, q1u denote the vertex sets of X and Y . Consider the bijection ϕ given

by p ÞÑ p1, q ÞÑ q1 and the bijection ψ given by p ÞÑ q1, q ÞÑ p1. Note that the weight matrix
is determined by setting ωXpp, pq � α, ωXpp, qq � δ, ωXpq, pq � β, and ωXpq, qq � γ, and
similarly for Y . Then we get dispϕq � max p|α � α1|, |β � β1|, |γ � γ1|, |δ � δ1|q and dispψq �
maxpp|α � γ1|, |γ � α1|, |δ � β1|, |β � δ1|q. The formula follows immediately. �

Proof of Proposition 17. We begin with an observation. Given X, Y P FN , let X 1, Y 1 P FN be
such that X �w

II X
1, Y �w

II Y
1, and cardpX 1q � cardpY 1q. Then we have:

dN pX, Y q ¤ dN pX,X
1q � dN pX

1, Y 1q � dN pY
1, Y q � dN pX

1, Y 1q ¤ pdN pX 1, Y 1q,

where the last inequality follows from Remark 15.
Next let η ¡ dN pX, Y q, and let R P RpX, Y q be such that dispRq   2η. We wish to find

networks X 1 and Y 1 such that pdN pX 1, Y 1q   η. Write Z � X � Y , and write f : Z Ñ X and
g : Z Ñ Y to denote the (surjective) projection maps px, yq ÞÑ x and px, yq ÞÑ y. Notice that we
may write R � tpfpzq, gpzqq : z P R � Zu . In particular, by the definition of a correspondence,
the restrictions of f, g to R are still surjective.

Define two weight functions f�ω, g�ω : R � R Ñ R by f�ωpz, z1q � ωXpfpzq, fpz
1qq and

g�ωpz, z1q � ωY pgpzq, gpz
1qq. Let pU, ωUq � pR, f�ωq and let pV, ωV q � pR, g�ωq. Note that

dN pX,Uq � 0 by Remark 8, because cardpUq ¥ cardpXq and for all z, z1 P U , we have
ωUpz, z

1q � f�ωpz, z1q � ωXpfpzq, fpz
1qq for the surjective map f . Similarly dN pY, V q � 0.

Next let ϕ : U Ñ V be the bijection z ÞÑ z. Then we have:

sup
z,z1PU

|ωUpz, z
1q � ωV pϕpzq, ϕpz

1qq| � sup
z,z1PU

|ωUpz, z
1q � ωV pz, z

1q|

� sup
z,z1PR

|ωXpfpzq, fpz
1qq � ωY pgpzq, gpz

1qq|

� sup
px,yq,px1,y1qPR

|ωXpx, x
1q � ωY py, y

1q|

� dispRq. In particular,

inf
ϕ:UÑV bijection

dispϕq ¤ dispRq.

So there exist networks U, V with the same node set (and thus the same cardinality) such
that pdN pU, V q ¤ 1

2
dispRq   η. We have already shown that dN pX, Y q ¤ pdN pU, V q. Since

η ¡ dN pX, Y q was arbitrary, it follows that we have:

dN pX, Y q � inf
!pdN pX 1, Y 1q : X 1 �w

II X, Y
1 �w

II Y, and cardpX 1q � cardpY 1q
)
. �

Proof of Theorem 23. By Theorem 13, we know that X and Y are Type I weakly isomorphic. So
there exists a set V with surjections ϕX : V Ñ X , ϕY : V Ñ Y such that AXpϕXpvq, ϕXpv1qq �
AY pϕY pvq, ϕY pv

1qq for all v, v1 P V . Thus we obtain (not necessarily unique) maps f : X Ñ Y
and g : Y Ñ X that are weight-preserving. Hence the composition g � f : X Ñ X is a
weight-preserving map. Without loss of generality, assume that X is Ψ-controlled. Recall that
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this means that there exists a continuous function Ψ : R� � R� Ñ R� such that Ψp0, 0q � 0 and
AXpx, x

1q ¤ ΨpAXpx, x
2q, AXpx

1, x2qq for all x, x1, x2 P X .
It is known that an isometric embedding from a compact metric space into itself must be bijective

[7, Theorem 1.6.14]. We now prove a similar result using the assumptions of our theorem. Let
h : X Ñ X be a weight-preserving map. By the assumption of a dissimilarity network, we know
that f, g and h are injective.

We check that h is continuous, using the assumptions about the topology on X . Let V � hpXq be
open. Define U :� h�1rV s. We claim that U is open. Let x P U , and consider hpxq P V . Since V is
open and the forward balls form a base for the topology, we pick ε ¡ 0 such that B�phpxq, εq � V .
Now let x1 P B�px, εq. Then AXphpxq, hpx1qq � AXpx, x

1q   ε, so hpx1q P B�phpxq, εq � V .
Hence x1 P U . It follows that B�px, εq � U . Hence U is open, and h is continuous.

Next we check that X is Hausdorff, using the ΨX-controllability assumption. Let x, x1 P X ,
where x � x1. Using continuity of ΨX , let ε ¡ 0 be such that Ψpr0, εq, r0, εqq � r0, AXpx, x

1qq. We
wish to show that B�px, εq XB�px1, εq � ∅. Towards a contradiction, suppose this is not the case
and let z P B�px, εq X B�px1, εq. But then AXpx, x1q ¤ Ψ

�
AXpx, zq, AXpx

1, zq
�
  AXpx, x

1q, a
contradiction. It follows that X is Hausdorff.

Now hpXq is compact, being the continuous image of a compact space, and it is closed in X
because it is a compact subset of a Hausdorff space.

Finally we show that h is surjective. Towards a contradiction, suppose that the open set XzhpXq
is nonempty, and let x P XzhpXq. Using the topology assumption on X , pick ε ¡ 0 such that
B�px, εq � XzhpXq. Define x0 :� x, and xn :� hpxn�1q for each n P N. Then for each n P N,
we have AXpx0, xnq ¥ ε. Since h is weight-preserving, we also have AXpxk, xk�nq ¥ ε for all
k, n P N. Since X is sequentially compact, the sequence pxkqk¥0 has a convergent subsequence
pxkjqjPN that limits to some z P X . Thus B�pz, rq contains all but finitely many terms of this
sequence, for any r ¡ 0. Now for any m,n P N we observe:

AXpxm, xnq ¤ Ψ
�
AXpxm, zq, AXpxn, zq

�
, where AXpxm, zq ¤ Ψ

�
AXpxm, xmq, AXpz, xmq

�
� Ψ

�
0, AXpz, xmq

�
,

and similarly AXpxn, zq ¤ Ψ
�
0, AXpz, xnq

�
.

Since Ψ is continuous and vanishes at p0, 0q, we choose δ ¡ 0 such that Ψpr0, δq, r0, δqq � r0, εq.
We also choose η ¡ 0 such that Ψp0, r0, ηqq � r0, δq. Since B�pz, ηq contains all but finitely many
terms of the sequence pxkjqj¥N, we pick N P N so that xkm P B�pz, ηq, for all m ¥ N . Let
m,n ¥ N . Then AXpz, xknq   η and AXpz, xkmq   η. Thus AXpxkn , zq ¤ Ψp0, AXpz, xknqq   δ
and AXpxkm , zq ¤ Ψp0, AXpz, xkmqq   δ. It follows that AXpxkm , xknq   ε.

But this is a contradiction to what we have shown before. Thus h is surjective, hence bijective.
Since h was an arbitrary weight-preserving map from X into itself, the same result holds for
g � f : X Ñ X . This shows that g is surjective. It follows that X �s Y . �

Proof of Proposition 38. All of these cases are easy to check, so we will just record the proof for
spec. Suppose pX,ωXq and pY, ωY q are strongly isomorphic via ϕ. Let x P X . Let α P specXpxq.
Then there exists x1 P X such that α � ωXpx, x

1q. But since ωXpx, x1q � ωY pϕpxq, ϕpx
1qq, we

also have α P specY pϕpxqq. Thus specXpxq � specXpϕpxqq. The reverse containment is similar.
Thus for any x P X , specXpxq � specY pϕpxqq. Since specpXq �

�
xPX specXpxq, it follows that

specpXq � specpY q. �

Lemma 53. Let pX,ωXq, pY, ωY q P CN . Let f represent any of the maps tr, out, and in, and let
fX (resp. fY ) represent the corresponding map trX , outX , inX (resp. trY , outY , inY ). Then we
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obtain:

dRHpfpXq, fpY qq � inf
RPRpX,Y q

sup
px,yqPR

��fXpxq � fY pyq
��.

Proof of Lemma 53. Observe that fpXq � tfXpxq : x P Xu � fXpXq, so we need to show

dRHpfXpXq, fY pY qq � inf
RPRpX,Y q

sup
px,yqPR

��fXpxq � fY pyq
��.

Recall that by the definition of Hausdorff distance on R, we have

dRHpfXpXq, fY pY qq � max
 

sup
xPX

inf
yPY

|fXpxq � fY pyq|, sup
yPY

inf
xPX

|fXpxq � fY pyq|
(
.

Let a P X and let R P RpX, Y q. Then there exists b P Y such that pa, bq P R. Then we have:

|fXpaq � fY pbq| ¤ sup
px,yqPR

|fXpxq � fY pyq|, and so

inf
bPY

|fXpaq � fY pbq| ¤ sup
px,yqPR

|fXpxq � fY pyq|.

This holds for all a P X . Then,

sup
aPX

inf
bPY

|fXpaq � fY pbq| ¤ sup
px,yqPR

|fXpxq � fY pyq|.

This holds for all R P RpX, Y q. So we have

sup
aPX

inf
bPY

|fXpaq � fY pbq| ¤ inf
RPR

sup
px,yqPR

|fXpxq � fY pyq|.

By a similar argument, we also have

sup
bPY

inf
aPX

|fXpaq � fY pbq| ¤ inf
RPR

sup
px,yqPR

|fXpxq � fY pyq|.

Thus dRHpfXpXq, fY pY qq ¤ inf
RPR

sup
px,yqPR

|fXpxq � fY pyq|.

Now we show the reverse inequality. Let x P X , and let η ¡ dRHpfXpXq, fY pY qq. Then there
exists y P Y such that |fXpxq � fY pyq|   η. Define ϕpxq � y, and extend ϕ to all of X in this
way. Let y P Y . Then there exists x P X such that |fXpxq � fY pyq|   η. Define ψpyq � x, and
extend ψ to all of Y in this way. Let R � tpx, ϕpxqq : x P XuY tpψpyq, yq : y P Y u. Then for each
pa, bq P R, we have |fXpaq � fY pbq|   η. Thus we have infRPR suppx,yqPR |fXpxq � fY pyq|   η.
Since η ¡ dRHpfXpXq, fY pY qq was arbitrary, it follows that

inf
RPRpX,Y q

sup
px,yqPR

|fXpxq � fY pyq| ¤ dRHpfXpXq, fY pY qq. �

Proof of Proposition 41. Let η ¡ dN pX, Y q. We break this proof into three parts.
The diam case. Recall that diam is an R-valued invariant, so we wish to show | diampXq �
diampY q| ¤ 2dN pX, Y q. Let R P RpX, Y q be such that for any pa, bq, pa1, b1q P R, we have
|ωXpa, a

1q � ωY pb, b
1q|   2η.
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Let x, x1 P X such that |ωXpx, x1q| � diampXq, and let y, y1 be such that px, yq, px1, y1q P R.
Then we have:

|ωXpx, x
1q � ωY py, y

1q|   2η

|ωXpx, x
1q � ωY py, y

1q| � |ωY py, y
1q|   2η � |ωY py, y

1q|

|ωXpx, x
1q|   diampY q � 2η.

Thus diampXq   diampY q � 2η

Similarly, we get diampY q   diampXq � 2η. It follows that | diampXq � diampY q|   2η. Since
η ¡ dN pX, Y q was arbitrary, it follows that:

| diampXq � diampY q| ¤ 2dN pX, Y q.

For tightness, consider the networks X � N1p1q and Y � N1p2q. By Example 7, we have
that dN pX, Y q � 1

2
. On the other hand, diampXq � 1 and diampY q � 2 so that | diampXq �

diampY q| � 1 � 2dN pX, Y q.
The cases tr, out, and in. First we show Lptrq � 2. By Lemma 53, it suffices to show

inf
RPRpX,Y q

sup
px,yqPR

|trXpxq � trY pyq|   2η.

LetR P RpX, Y q be such that for any pa, bq, pa1, b1q P R, we have |ωXpa, a1q�ωY pb, b1q|   2η. Then
we obtain |ωXpa, aq�ωY pb, bq|   2η. Thus |trXpaq�trY pbq|   2η. Since pa, bq P Rwas arbitrary, it
follows that suppa,bqPR |trXpaq� trXpbq|   2η. It follows that infRPR suppa,bqPR |trXpaq� trXpbq|  
2η. The result now follows because η ¡ dN pX, Y q was arbitrary. The proofs for out and in are
similar, so we just show the former. By Lemma 53, it suffices to show

inf
RPRpX,Y q

sup
px,yqPR

|outXpxq � outY pyq|   2η.

Recall that outXpxq � maxx1PX |ωXpx, x
1q|. Let R P RpX, Y q be such that |ωXpx, x1q �

ωY py, y
1q|   2η for any px, yq, px1, y1q P R. By triangle inequality, it follows that |ωXpx, x1q|  

|ωY py, y
1q|�2η. In particular, for px1, y1q P R such that |ωXpx, x1q| � outXpxq, we have outXpxq  

|ωY py, y
1q| � 2η. Hence outXpxq   outY pyq � 2η. Similarly, outY pyq   outXpxq � 2η. Thus we

have |outXpxq � outY pyq|   2η. This holds for all px, yq P R, so we have:

sup
px,yqPR

|outXpxq � outY pyq|   2η.

Minimizing over all correspondences, we get:

inf
RPR

sup
pa,bqPR

|outXpaq � outY pbq|   2η.

The result follows because η ¡ dN pX, Y q was arbitrary.
Finally, we need to show that our bounds for the Lipschitz constant are tight. Let X � N1p1q and

let Y � N1p2q. Then dN pX, Y q � 1
2
. We also have dRHptrpXq, trpY qq � |1� 2| � 1, and similarly

dRHpoutpXq, outpY qq � dRHpinpXq, inpY qq � 1.

The cases mout and min. The two cases are similar, so let’s just prove Lpmoutq � 2. Since mout is
an R-invariant, we wish to show |moutpXq �moutpY q|   2η. It suffices to show:

|moutpXq �moutpY q| ¤ dRHpoutpXq, outpY qq,



48 DISTANCES BETWEN NETWORKS

because we have already shown

dRHpoutpXq, outpY qq � inf
RPRpX,Y q

sup
px,yqPR

|outXpxq � outY pyq|   2η.

Here we have used Lemma 53 for the first equality above.
Let ε ¡ dRHpoutpXq, outpY qq. Then for any x P X , there exists y P Y such that:

|outXpxq � outY pyq|   ε.

Let a P X be such that moutpXq � outXpaq. Then we have:

|outXpaq � outY pyq|   ε,

for some y P Y . In particular, we have:

moutpY q ¤ outY pyq   ε� outXpaq � ε�moutpXq.

Similarly, we obtain:
moutpXq   ε�moutpY q.

Thus we have |moutpXq �moutpY q|   ε. Since ε ¡ dRHpoutpXq, outpY qq was arbitrary, we have:

|moutpXq �moutpY q| ¤ dRHpoutpXq, outpY qq.

The inequality now follows by Lemma 53 and our proof in the case of the out map.
For tightness, note that |moutpN1p1qq�moutpN1p2qq| � |1�2| � 1 � 2� 1

2
� 2dN pN1p1q, N1p2qq.

The same example works for the min case. �

Proof of Proposition 43. (First inequality.) Let X, Y P CN and let η ¡ dN pX, Y q. Let R P
RpX, Y q be such that suppx,yq,px1,y1qPR |ωXpx, x

1q � ωY py, y
1q|   2η. Let px, yq P R, and let

α P specXpxq. Then there exists x1 P X such that ωXpx, x1q � α. Let y1 P Y be such
that px1, y1q P R. Let β � ωY py, y

1q. Note β P specY pyq. Also note that |α � β|   2η.
By a symmetric argument, for each β P specY pyq, there exists α P specXpxq such that |α �
β|   2η. So dRHpspecXpxq, specY pyqq   2η. This is true for any px, yq P R, and so we have
suppx,yqPR d

R
HpspecXpxq, specY pyqq ¤ 2η. Then we have:

inf
RPR

sup
px,yqPR

dRHpspecXpxq, specY pyqq ¤ 2η.

Since η ¡ dN pX, Y q was arbitrary, the first inequality follows.
(Second inequality.) Let R P RpX, Y q. Let ηpRq � suppx,yqPR d

R
HpspecXpxq, specY pyqq. Let

α P specpXq. Then α P specXpxq for some x P X . Let y P Y such that px, yq P R. Then there
exists β P specY pyq such that |α�β| ¤ dRHpspecXpxq, specY pyqq, and in particular, |α�β| ¤ ηpRq.
In other words, for each α P specpXq, there exists β P specpY q such that |α � β| ¤ ηpRq. By a
symmetric argument, for each β P specpY q, there exists α P specpXq such that |α � β| ¤ ηpRq.
Thus dRHpspecpXq, specpY qq ¤ ηpRq. This holds for any R P R. Thus we have

dRHpspecpXq, specpY qq ¤ inf
RPR

sup
px,yqPR

dRHpspecXpxq, specY pyqq.

This proves the second inequality. �

Proof of Theorem 45. Let n P N. We wish to show dnpMnpXq,MnpY qq ¤ 2dN pX, Y q. Let
R P RpX, Y q. Let pxiq P Xn, and let pyiq P Y n be such that for each i, we have pxi, yiq P R. Then
for all j, k P t1, . . . , nu, |ωXpxi, xjq � ωY pyi, yjq| ¤ dispRq.
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Thus infpyiqPY n |ωXpxi, xjq � ωY pyi, yjq| ¤ dispRq. This is true for any pxiq P Xn. Thus we get:

sup
pxiqPXn

inf
pyiqPY n

|ωXpxi, xjq � ωY pyi, yjq| ¤ dispRq.

By a symmetric argument, we get suppyiqPY n infpxiqPXn |ωXpxi, xjq � ωY pyi, yjq| ¤ dispRq. Thus
dnpMnpXq,MnpY qq ¤ dispRq. This holds for any R P RpX, Y q. Thus dnpMnpXq,MnpY qq ¤
infRPRpX,Y q dispRq � 2dN pX, Y q.

For tightness, let X � N1p1q and let Y � N1p2q. Then dN pX, Y q � 1
2
, so we wish to show

dnpMnpXq,MnpY qq � 1 for each n P N. Let n P N. Let 1n�n denote the n � n matrix with 1
in each entry. Then MnpXq � t1n�nu and MnpY q � t2 � 1n�nu. Thus dnpMnpXq,MnpY qq � 1.
Since n was arbitrary, we conclude that equality holds for each n P N. �
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APPENDIX B. ADDITIONAL RESULTS ON SIMULATED HIPPOCAMPAL NETWORKS

FIGURE 14. Single linkage dendrogram based on local spectrum lower bound of
Proposition 49 corresponding to hippocampal networks with place field radius 0.2L.

FIGURE 15. Single linkage dendrogram based on local spectrum lower bound of
Proposition 49 corresponding to hippocampal networks with place field radius 0.1L.
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FIGURE 16. Single linkage dendrogram based on local spectrum lower bound of
Proposition 49 corresponding to hippocampal networks with place field radius 0.05L.
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