Table of examples of pointwise extremal configurations on three-dimensional sphere discussion in the arXiv preprint "Extremal spherical polytopes and Borsuk's conjecture "

In our simulation, we apply gradient flow to the diameter functional in order to find local minima. The results of this simulation reveal that these local minima are anti-self-polar (ASP), meaning that their convex hulls have the property of being ASP. This finding sheds light on the relationship between the diameter functional and ASP configurations.

Simulation procedure: The objective of the simulation is to obtain configurations derived from k-stacked tetrahedra configurations \(T_k\), which is a set consisting of the north pole and \(k\) tetrahedra on the 3-sphere \(\mathbb{S}^3\). Four calibrated tetrahedra \((T_1, T_2,T_3, T_4)\) are chosen, and up to 4 points are deleted from each of them to form the initial sets. The gradient flow is then applied to this initial sets.

The table presents 65 configurations from the diameter gradient flow, sorted based on the number of points, the number of edges in its convex hull, maximum number of vertices in a facet, number of facets with maximum vertices, number of triangles in diameter graph,and number of complete 4-node subgraphs in the diameter graph . These configurations are distinguished by the isomorphism type of their diameter graphs. These configurations are novel in that they are not simply pyramid extensions of configurations found on the 2-sphere. To see configurations on the 2-sphere with at most 10 vertices, follow this link. Some additional configurations on \(\mathbb{S}^3\) derived from the configurations in the table below can be found by following this link

Index Number of points Number of edges in its convex hull Maximum number of vertices in a facet Number of facets with max vertices Number of triangles in diameter graph Number of complete 4-node subgraphs in diameter graph Number of quadrilateral in diameter graph (Spherical) Diameter
0 (\(T_1\)) 5 10 4 5 10 5 0 1.82347
1 (\(T_2\)) 9 20 6 4 16 5 12 1.90733
2 9 24 6 2 15 3 13 1.90947
3 10 25 7 1 16 4 18 1.90989
4 10 25 7 2 17 4 15 1.90983
5 11 26 7 2 17 5 23 1.91012
6 11 26 8 2 20 5 15 1.91004
7 11 28 8 1 17 4 22 1.91029
8 12 29 7 1 16 5 33 1.91044
9 12 29 8 1 18 5 27 1.91052
10 12 29 9 1 19 4 24 1.91043
11 12 29 9 1 20 4 21 1.91052
12 (\(T_3\)) 13 30 6 8 16 5 42 1.91054
13 13 30 8 3 19 5 33 1.91059
14 13 32 8 1 17 5 37 1.91057
15 13 32 8 2 18 5 35 1.91048
16 13 32 8 2 20 5 30 1.91053
17 13 32 9 1 21 5 26 1.91055
18 13 32 9 2 21 5 26 1.91056
19 13 32 10 1 21 4 25 1.91057
20 13 32 10 2 26 7 15 1.91040
21 13 34 7 2 16 3 40 1.91060
22 13 34 7 2 16 5 38 1.91060
23 13 34 7 2 17 4 36 1.91059
24 13 34 7 3 16 4 39 1.91060
25 13 34 7 4 17 4 36 1.91058
26 13 34 8 1 16 4 39 1.91061
27 13 34 8 1 17 4 36 1.91060
28 13 34 8 1 17 4 36 1.91059
29 13 34 8 1 17 4 36 1.91059
30 13 34 8 1 17 4 37 1.91057
31 13 34 9 1 18 4 33 1.91058
32 13 34 9 1 18 4 33 1.91060
33 13 34 10 1 21 4 24 1.91056
34 13 34 10 1 21 4 24 1.91059
35 13 34 10 1 21 4 24 1.91058
36 13 34 10 1 22 5 23 1.91057
37 13 34 10 1 22 5 23 1.91056
38 14 35 7 1 16 5 47 1.91061
39 14 35 7 3 17 4 45 1.91061
40 14 35 8 1 16 5 48 1.91060
41 14 35 8 2 17 4 45 1.91062
42 14 35 8 2 17 5 44 1.91062
43 14 35 8 2 20 5 36 1.91060
44 14 35 9 1 18 5 41 1.91060
45 14 35 9 1 19 4 39 1.91060
46 14 35 9 1 20 5 36 1.91060
47 14 35 10 1 20 4 35 1.91061
48 14 35 11 1 23 4 26 1.91060
49 14 35 11 1 24 5 25 1.91059
50 14 37 8 1 17 4 43 1.91062
51 14 37 8 2 17 4 43 1.91061
52 14 37 9 1 17 4 43 1.91062
53 14 37 11 1 23 4 25 1.91061
54 15 36 7 2 16 5 57 1.91062
55 15 36 8 2 20 5 45 1.91062
56 15 36 9 2 18 5 50 1.91062
57 15 38 8 1 16 5 54 1.91062
58 15 38 8 2 17 4 52 1.91062
59 15 38 9 1 16 5 54 1.91062
60 15 38 9 1 19 4 45 1.91062
61 15 38 10 1 19 4 45 1.91062
62 15 38 12 1 25 4 27 1.91062
63 16 39 7 1 16 5 63 1.91063
64 16 39 9 1 16 5 63 1.91063
65 16 39 9 1 19 4 54 1.91063
66 (\(T_4\)) 17 40 6 12 16 5 72 1.91063